In algebra, a field k is perfect if any one of the following equivalent conditions holds:
A ⊗ kF
In particular, all fields of characteristic zero and all finite fields are perfect.
Perfect fields are significant because Galois theory over these fields becomes simpler, since the general Galois assumption of field extensions being separable is automatically satisfied over these fields (see third condition above).
Another important property of perfect fields is that they admit Witt vectors.
More generally, a ring of characteristic p (p a prime) is called perfect if the Frobenius endomorphism is an automorphism.[1] (When restricted to integral domains, this is equivalent to the above condition "every element of k is a pth power".)
There is another definition for perfect fields in Quora that is defined only for Galois fields. A Galois field
F
F
F
F
F
F
Q(\sqrt{5}i,\sqrt{6}i)
Q(\sqrt{5}i,\sqrt{6})
Q(\sqrt{5}i,\sqrt{14})
Q(\sqrt{11},\sqrt{14})
Q(\sqrt{6},\sqrt{19},\sqrt{73})
Q(\sqrt{2},\sqrt{3}i)
There is a theorem which states that every bad Galois field must have Galois group that can be nontrivially factored as the cross product of another Galois groups and therefore must have composite degree.
Examples of perfect fields are:
Q
C
Fq
Most fields that are encountered in practice are perfect. The imperfect case arises mainly in algebraic geometry in characteristic . Every imperfect field is necessarily transcendental over its prime subfield (the minimal subfield), because the latter is perfect. An example of an imperfect field is the field
Fq(x)
x\mapstoxp
1/p | |
F | |
q(x,x |
1/p2 | |
,x |
,\ldots)
called its perfection. Imperfect fields cause technical difficulties because irreducible polynomials can become reducible in the algebraic closure of the base field. For example,[4] consider
f(x,y)=xp+ayp\ink[x,y]
k
p
k\operatorname{alg
f(x,y)=(x+by)p,
f
k[x,y]
Any finitely generated field extension K over a perfect field k is separably generated, i.e. admits a separating transcendence base, that is, a transcendence base Γ such that K is separably algebraic over k(Γ).[5]
One of the equivalent conditions says that, in characteristic p, a field adjoined with all p-th roots is perfect; it is called the perfect closure of k and usually denoted by
p-infty | |
k |
The perfect closure can be used in a test for separability. More precisely, a commutative k-algebra A is separable if and only if
A ⊗ k
p-infty | |
k |
In terms of universal properties, the perfect closure of a ring A of characteristic p is a perfect ring Ap of characteristic p together with a ring homomorphism such that for any other perfect ring B of characteristic p with a homomorphism there is a unique homomorphism such that v factors through u (i.e.). The perfect closure always exists; the proof involves "adjoining p-th roots of elements of A", similar to the case of fields.[6]
The perfection of a ring A of characteristic p is the dual notion (though this term is sometimes used for the perfect closure). In other words, the perfection R(A) of A is a perfect ring of characteristic p together with a map such that for any perfect ring B of characteristic p equipped with a map, there is a unique map such that φ factors through θ (i.e.). The perfection of A may be constructed as follows. Consider the projective system
… → A → A → A → …
p=x | |
x | |
i |
Fq
. Milne. James. James Milne (mathematician). Elliptic Curves. 6.