The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them. The percolation threshold is the critical value of the occupation probability p, or more generally a critical surface for a group of parameters p1, p2, ..., such that infinite connectivity (percolation) first occurs.[1]
The most common percolation model is to take a regular lattice, like a square lattice, and make it into a random network by randomly "occupying" sites (vertices) or bonds (edges) with a statistically independent probability p. At a critical threshold pc, large clusters and long-range connectivity first appear, and this is called the percolation threshold. Depending on the method for obtaining the random network, one distinguishes between the site percolation threshold and the bond percolation threshold. More general systems have several probabilities p1, p2, etc., and the transition is characterized by a critical surface or manifold. One can also consider continuum systems, such as overlapping disks and spheres placed randomly, or the negative space (Swiss-cheese models).
To understand the threshold, you can consider a quantity such as the probability that there is a continuous path from one boundary to another along occupied sites or bonds—that is, within a single cluster. For example, one can consider a square system, and ask for the probability P that there is a path from the top boundary to the bottom boundary. As a function of the occupation probability p, one finds a sigmoidal plot that goes from P=0 at p=0 to P=1 at p=1. The larger the square is compared to the lattice spacing, the sharper the transition will be. When the system size goes to infinity, P(p) will be a step function at the threshold value pc. For finite large systems, P(pc) is a constant whose value depends upon the shape of the system; for the square system discussed above, P(pc)= exactly for any lattice by a simple symmetry argument.
There are other signatures of the critical threshold. For example, the size distribution (number of clusters of size s) drops off as a power-law for large s at the threshold, ns(pc) ~ s−τ, where τ is a dimension-dependent percolation critical exponents. For an infinite system, the critical threshold corresponds to the first point (as p increases) where the size of the clusters become infinite.
In the systems described so far, it has been assumed that the occupation of a site or bond is completely random—this is the so-called Bernoulli percolation. For a continuum system, random occupancy corresponds to the points being placed by a Poisson process. Further variations involve correlated percolation, such as percolation clusters related to Ising and Potts models of ferromagnets, in which the bonds are put down by the Fortuin–Kasteleyn method.[2] In bootstrap or k-sat percolation, sites and/or bonds are first occupied and then successively culled from a system if a site does not have at least k neighbors. Another important model of percolation, in a different universality class altogether, is directed percolation, where connectivity along a bond depends upon the direction of the flow.
Over the last several decades, a tremendous amount of work has gone into finding exact and approximate values of the percolation thresholds for a variety of these systems. Exact thresholds are only known for certain two-dimensional lattices that can be broken up into a self-dual array, such that under a triangle-triangle transformation, the system remains the same. Studies using numerical methods have led to numerous improvements in algorithms and several theoretical discoveries.
Simple duality in two dimensions implies that all fully triangulated lattices (e.g., the triangular, union jack, cross dual, martini dual and asanoha or 3-12 dual, and the Delaunay triangulation) all have site thresholds of, and self-dual lattices (square, martini-B) have bond thresholds of .
The notation such as (4,82) comes from Grünbaum and Shephard,[3] and indicates that around a given vertex, going in the clockwise direction, one encounters first a square and then two octagons. Besides the eleven Archimedean lattices composed of regular polygons with every site equivalent, many other more complicated lattices with sites of different classes have been studied.
Error bars in the last digit or digits are shown by numbers in parentheses. Thus, 0.729724(3) signifies 0.729724 ± 0.000003, and 0.74042195(80) signifies 0.74042195 ± 0.00000080. The error bars variously represent one or two standard deviations in net error (including statistical and expected systematic error), or an empirical confidence interval, depending upon the source.
For a random tree-like network (i.e., a connected network with no cycle) without degree-degree correlation, it can be shown that such network can have a giant component, and the percolation threshold (transmission probability) is given by
pc=
1 | |
g1'(1) |
=
\langlek\rangle | |
\langlek2\rangle-\langlek\rangle |
Where
g1(z)
{\langlek\rangle}
{\langlek2\rangle}
pc={\langlek\rangle}-1
In networks with low clustering,
0<C\ll1
(1-C)-1
pc=
1 | |
1-C |
1 | |
g1'(1) |
.
This indicates that for a given degree distribution, the clustering leads to a larger percolation threshold, mainly because for a fixed number of links, the clustering structure reinforces the core of the network with the price of diluting the global connections. For networks with high clustering, strong clustering could induce the core–periphery structure, in which the core and periphery might percolate at different critical points, and the above approximate treatment is not applicable.[5]
Lattice | z | \overlinez | Site percolation threshold | Bond percolation threshold | |
---|---|---|---|---|---|
3-12 or super-kagome, (3, 122) | 3 | 3 | 0.807900764... = (1 − 2 sin (/18)) | 0.74042195(80), 0.74042077(2), 0.740420800(2), 0.7404207988509(8), 0.740420798850811610(2), | |
cross, truncated trihexagonal (4, 6, 12) | 3 | 3 | 0.746, 0.750, 0.747806(4), 0.7478008(2) | 0.6937314(1), 0.69373383(72), 0.693733124922(2) | |
square octagon, bathroom tile, 4-8, truncated square(4, 82) | 3 | 3 | - | 0.729, 0.729724(3), 0.7297232(5) | 0.6768, 0.67680232(63), 0.6768031269(6), 0.6768031243900113(3), |
honeycomb (63) | 3 | 3 | 0.6962(6), 0.697040230(5), 0.6970402(1), 0.6970413(10), 0.697043(3), | 0.652703645... = 1-2 sin (π/18), 1+ p3-3p2=0 | |
kagome (3, 6, 3, 6) | 4 | 4 | 0.652703645... = 1 − 2 sin(/18) | 0.5244053(3), 0.52440516(10), 0.52440499(2), 0.524404978(5), 0.52440572..., 0.52440500(1), 0.524404999173(3), 0.524404999167439(4) 0.52440499916744820(1) | |
ruby, rhombitrihexagonal (3, 4, 6, 4) | 4 | 4 | 0.620, 0.621819(3), 0.62181207(7) | 0.52483258(53), 0.5248311(1), 0.524831461573(1) | |
square (44) | 4 | 4 | 0.59274(10), 0.59274605079210(2), 0.59274601(2), 0.59274605095(15), 0.59274621(13), 0.592746050786(3),[6] 0.59274621(33), 0.59274598(4), 0.59274605(3), 0.593(1), 0.591(1), 0.569(13), 0.59274(5) | ||
snub hexagonal, maple leaf (34,6) | 5 | 5 | 0.579 0.579498(3) | 0.43430621(50), 0.43432764(3), 0.4343283172240(6), | |
snub square, puzzle (32, 4, 3, 4) | 5 | 5 | 0.550, 0.550806(3) | 0.41413743(46), 0.4141378476(7), 0.4141378565917(1), | |
frieze, elongated triangular(33, 42) | 5 | 5 | 0.549, 0.550213(3), 0.5502(8) | 0.4196(6), 0.41964191(43), 0.41964044(1), 0.41964035886369(2) | |
triangular (36) | 6 | 6 | 0.347296355... = 2 sin (/18), 1 + p3 − 3p = 0 | ||
Note: sometimes "hexagonal" is used in place of honeycomb, although in some contexts a triangular lattice is also called a hexagonal lattice. z = bulk coordination number.
In this section, sq-1,2,3 corresponds to square (NN+2NN+3NN), etc. Equivalent to square-2N+3N+4N, sq(1,2,3). tri = triangular, hc = honeycomb.
Lattice | z | Site percolation threshold | Bond percolation threshold |
---|---|---|---|
sq-1, sq-2, sq-3, sq-5 | 4 | 0.5927... (square site) | |
sq-1,2, sq-2,3, sq-3,5 | 8 | 0.407... (square matching) | 0.25036834(6), 0.2503685, 0.25036840(4) |
sq-1,3 | 8 | 0.337 | 0.2214995 |
sq-2,5: 2NN+5NN | 8 | 0.337 | |
hc-1,2,3: honeycomb-NN+2NN+3NN | 12 | 0.300, 0.300, 0.302960... = 1-pc(site, hc) | |
tri-1,2: triangular-NN+2NN | 12 | 0.295, 0.289, 0.290258(19) | |
tri-2,3: triangular-2NN+3NN | 12 | 0.232020(36), 0.232020(20) | |
sq-4: square-4NN | 8 | 0.270... | |
sq-1,5: square-NN+5NN (r ≤ 2) | 8 | 0.277 | |
sq-1,2,3: square-NN+2NN+3NN | 12 | 0.292, 0.290(5) 0.289, 0.288, | 0.1522203 |
sq-2,3,5: square-2NN+3NN+5NN | 12 | 0.288 | |
sq-1,4: square-NN+4NN | 12 | 0.236 | |
sq-2,4: square-2NN+4NN | 12 | 0.225 | |
tri-4: triangular-4NN | 12 | 0.192450(36), 0.1924428(50) | |
hc-2,4: honeycomb-2NN+4NN | 12 | 0.2374 | |
tri-1,3: triangular-NN+3NN | 12 | 0.264539(21) | |
tri-1,2,3: triangular-NN+2NN+3NN | 18 | 0.225, 0.215, 0.215459(36) 0.2154657(17) | |
sq-3,4: 3NN+4NN | 12 | 0.221 | |
sq-1,2,5: NN+2NN+5NN | 12 | 0.240 | 0.13805374 |
sq-1,3,5: NN+3NN+5NN | 12 | 0.233 | |
sq-4,5: 4NN+5NN | 12 | 0.199 | |
sq-1,2,4: NN+2NN+4NN | 16 | 0.219 | |
sq-1,3,4: NN+3NN+4NN | 16 | 0.208 | |
sq-2,3,4: 2NN+3NN+4NN | 16 | 0.202 | |
sq-1,4,5: NN+4NN+5NN | 16 | 0.187 | |
sq-2,4,5: 2NN+4NN+5NN | 16 | 0.182 | |
sq-3,4,5: 3NN+4NN+5NN | 16 | 0.179 | |
sq-1,2,3,5: NN+2NN+3NN+5NN | 16 | 0.208 | 0.1032177 |
tri-4,5: 4NN+5NN | 18 | 0.140250(36), | |
sq-1,2,3,4: NN+2NN+3NN+4NN ( r\le\sqrt{5} | 20 | 0.19671(9), 0.196, 0.196724(10) | 0.0841509 |
sq-1,2,4,5: NN+2NN+4NN+5NN | 20 | 0.177 | |
sq-1,3,4,5: NN+3NN+4NN+5NN | 20 | 0.172 | |
sq-2,3,4,5: 2NN+3NN+4NN+5NN | 20 | 0.167 | |
sq-1,2,3,5,6: NN+2NN+3NN+5NN+6NN | 20 | 0.0783110 | |
sq-1,2,3,4,5: NN+2NN+3NN+4NN+5NN ( r\le\sqrt{8} | 24 | 0.164 | |
tri-1,4,5: NN+4NN+5NN | 24 | 0.131660(36) | |
sq-1,...,6: NN+...+6NN (r≤3) | 28 | 0.142 | 0.0558493 |
tri-2,3,4,5: 2NN+3NN+4NN+5NN | 30 | 0.117460(36) 0.135823(27) | |
tri-1,2,3,4,5: NN+2NN+3NN+4NN+5NN | 36 | 0.115, 0.115740(36), 0.1157399(58) | |
sq-1,...,7: NN+...+7NN ( r\le\sqrt{10} | 36 | 0.113 | 0.04169608 |
square: square distance ≤ 4 | 40 | 0.105(5) | |
sq-(1,...,8: NN+..+8NN ( r\le\sqrt{13} | 44 | 0.095, 0.095765(5), 0.09580(2) | |
sq-1,...,9: NN+..+9NN (r≤4) | 48 | 0.086 | 0.02974268 |
sq-1,...,11: NN+...+11NN ( r\le\sqrt{18} | 60 | 0.02301190(3) | |
sq-1,...,23 (r ≤ 7) | 148 | 0.008342595 | |
sq-1,...,32: NN+...+32NN ( r\le\sqrt{72} | 224 | 0.0053050415(33) | |
sq-1,...,86: NN+...+86NN (r≤15) | 708 | 0.001557644(4) | |
sq-1,...,141: NN+...+141NN ( r\le\sqrt{389} | 1224 | 0.000880188(90) | |
sq-1,...,185: NN+...+185NN (r≤23) | 1652 | 0.000645458(4) | |
sq-1,...,317: NN+...+317NN (r≤31) | 3000 | 0.000349601(3) | |
sq-1,...,413: NN+...+413NN ( r\le\sqrt{1280} | 4016 | 0.0002594722(11) | |
square: square distance ≤ 6 | 84 | 0.049(5) | |
square: square distance ≤ 8 | 144 | 0.028(5) | |
square: square distance ≤ 10 | 220 | 0.019(5) | |
2x2 lattice squares* (also above) | 20 | φc = 0.58365(2), pc = 0.196724(10), 0.19671(9), | |
3x3 lattice squares* (also above) | 44 | φc = 0.59586(2), pc = 0.095765(5), 0.09580(2) | |
4x4 lattice squares* | 76 | φc = 0.60648(1), pc = 0.0566227(15), 0.05665(3), | |
5x5 lattice squares* | 116 | φc = 0.61467(2), pc = 0.037428(2), 0.03745(2), | |
6x6 lattice squares* | 220 | pc = 0.02663(1), | |
10x10 lattice squares* | 436 | φc = 0.36391(2), pc = 0.0100576(5) | |
Here NN = nearest neighbor, 2NN = second nearest neighbor (or next nearest neighbor), 3NN = third nearest neighbor (or next-next nearest neighbor), etc. These are also called 2N, 3N, 4N respectively in some papers.
pc
\phic
\phic
1/4 | |
1-(1-\phi | |
c) |
=0.196724(10)\ldots
\phic=0.58365(2)
pc=1-(1-\phi
1/9 | |
c) |
=0.095765(5)\ldots
Here, one distorts a regular lattice of unit spacing by moving vertices uniformly within the box
(x-\alpha,x+\alpha),(y-\alpha,y+\alpha)
d
Lattice | \overlinez | \alpha | d | Site percolation threshold | Bond percolation threshold |
---|---|---|---|---|---|
square | 0.2 | 1.1 | 0.8025(2) | ||
0.2 | 1.2 | 0.6667(5) | |||
0.1 | 1.1 | 0.6619(1) | |||
Site threshold is number of overlapping objects per lattice site. k is the length (net area). Overlapping squares are shown in the complex neighborhood section. Here z is the coordination number to k-mers of either orientation, with
z=k2+10k-2
1 x k
System | k | z | Site coverage φc | Site percolation threshold pc |
---|---|---|---|---|
1 x 2 dimer, square lattice | 2 | 22 | 0.546910.5483(2)[7] | 0.17956(3)0.18019(9) |
1 x 2 aligned dimer, square lattice | 2 | 14 | 0.5715(18) | 0.3454(13) |
1 x 3 trimer, square lattice | 3 | 37 | 0.498980.50004(64) | 0.10880(2)0.1093(2) |
1 x 4 stick, square lattice | 4 | 54 | 0.45761 | 0.07362(2) |
1 x 5 stick, square lattice | 5 | 73 | 0.42241 | 0.05341(1) |
1 x 6 stick, square lattice | 6 | 94 | 0.39219 | 0.04063(2) |
The coverage is calculated from
pc
\phic=
2k | |
1-(1-p | |
c) |
1 x k
2k
For aligned
1 x k
\phic=
k | |
1-(1-p | |
c) |
Lattice | z | Site percolation threshold | Bond percolation threshold |
---|---|---|---|
(3, 122) | 3 | ||
(4, 6, 12) | 3 | ||
(4, 82) | 3 | 0.676835..., 4p3 + 3p4 − 6 p5 − 2 p6 = 1 | |
honeycomb (63) | 3 | ||
kagome (3, 6, 3, 6) | 4 | 0.524430..., 3p2 + 6p3 − 12 p4+ 6 p5 − p6 = 1 | |
(3, 4, 6, 4) | 4 | ||
square (44) | 4 | (exact) | |
(34,6) | 5 | 0.434371..., 12p3 + 36p4 − 21p5 − 327 p6 + 69p7 + 2532p8 − 6533 p9 + 8256 p10 − 6255p11 + 2951p12 − 837 p13 + 126 p14 − 7p15 = 1 | |
snub square, puzzle (32, 4, 3, 4) | 5 | ||
(33, 42) | 5 | ||
triangular (36) | 6 | (exact) | |
In AB percolation, a
psite
In colored percolation, occupied sites are assigned one of
n
Lattice | z | \overlinez | Site percolation threshold |
---|---|---|---|
triangular AB | 6 | 6 | 0.2145, 0.21524(34),[8] 0.21564(3)[9] |
AB on square-covering lattice | 6 | 6 | 1-\sqrt{1-pc(site,sq)}=0.361835 |
square three-color | 4 | 4 | 0.80745(5)[11] |
square four-color | 4 | 4 | 0.73415(4) |
square five-color | 4 | 4 | 0.69864(7) |
square six-color | 4 | 4 | 0.67751(5) |
triangular two-color | 6 | 6 | 0.72890(4) |
triangular three-color | 6 | 6 | 0.63005(4) |
triangular four-color | 6 | 6 | 0.59092(3) |
triangular five-color | 6 | 6 | 0.56991(5) |
triangular six-color | 6 | 6 | 0.55679(5) |
Site bond percolation. Here
ps
pb
f(ps,pb)
(ps,pb)
Square lattice:
Lattice | z | \overlinez | Site percolation threshold | Bond percolation threshold | |
---|---|---|---|---|---|
square | 4 | 4 | 0.615185(15) | 0.95 | |
0.667280(15) | 0.85 | ||||
0.732100(15) | 0.75 | ||||
0.75 | 0.726195(15) | ||||
0.815560(15) | 0.65 | ||||
0.85 | 0.615810(30) | ||||
0.95 | 0.533620(15) |
Honeycomb (hexagonal) lattice:
Lattice | z | \overlinez | Site percolation threshold | Bond percolation threshold | |
---|---|---|---|---|---|
honeycomb | 3 | 3 | 0.7275(5) | 0.95 | |
0. 0.7610(5) | 0.90 | ||||
0.7986(5) | 0.85 | ||||
0.80 | 0.8481(5) | ||||
0.8401(5) | 0.80 | ||||
0.85 | 0.7890(5) | ||||
0.90 | 0.7377(5) | ||||
0.95 | 0.6926(5) |
Kagome lattice:
Lattice | z | \overlinez | Site percolation threshold | Bond percolation threshold | |
---|---|---|---|---|---|
kagome | 4 | 4 | 0.6711(4), 0.67097(3) | 0.95 | |
0.6914(5), 0.69210(2) | 0.90 | ||||
0.7162(5), 0.71626(3) | 0.85 | ||||
0.7428(5), 0.74339(3) | 0.80 | ||||
0.75 | 0.7894(9) | ||||
0.7757(8), 0.77556(3) | 0.75 | ||||
0.80 | 0.7152(7) | ||||
0.81206(3) | 0.70 | ||||
0.85 | 0.6556(6) | ||||
0.85519(3) | 0.65 | ||||
0.90 | 0.6046(5) | ||||
0.90546(3) | 0.60 | ||||
0.95 | 0.5615(4) | ||||
0.96604(4) | 0.55 | ||||
0.9854(3) | 0.53 |
* For values on different lattices, see "An investigation of site-bond percolation on many lattices".
Approximate formula for site-bond percolation on a honeycomb lattice
Laves lattices are the duals to the Archimedean lattices. Drawings from. See also Uniform tilings.
Lattice | z | \overlinez | Site percolation threshold | Bond percolation threshold | |
---|---|---|---|---|---|
Cairo pentagonalD(32,4,3,4)=(53)+(54) | 3,4 | 3 | 0.6501834(2), 0.650184(5) | 0.585863... = 1 − pcbond(32,4,3,4) | |
Pentagonal D(33,42)=(54)+(53) | 3,4 | 3 | 0.6470471(2), 0.647084(5), 0.6471(6) | 0.580358... = 1 − pcbond(33,42), 0.5800(6) | |
D(34,6)=(46)+(43) | 3,6 | 3 | 0.639447 | 0.565694... = 1 − pcbond(34,6) | |
dice, rhombille tiling D(3,6,3,6) = (46) + (43) | 3,6 | 4 | 0.5851(4), 0.585040(5) | 0.475595... = 1 − pcbond(3,6,3,6) | |
ruby dualD(3,4,6,4) = (46) + (43) + (44) | 3,4,6 | 4 | 0.582410(5) | 0.475167... = 1 − pcbond(3,4,6,4) | |
union jack, tetrakis square tiling D(4,82) = (34) + (38) | 4,8 | 6 | 0.323197... = 1 − pcbond(4,82) | ||
bisected hexagon, cross dualD(4,6,12)= (312)+(36)+(34) | 4,6,12 | 6 | 0.306266... = 1 − pcbond(4,6,12) | ||
asanoha (hemp leaf)D(3, 122)=(33)+(312) | 3,12 | 6 | 0.259579... = 1 − pcbond(3, 122) |
Top 3 lattices: #13 #12 #36
Bottom 3 lattices: #34 #37 #11
Lattice | z | \overlinez | Site percolation threshold | Bond percolation threshold | |
---|---|---|---|---|---|
41 | (3,4,3,12) + (3, 122) | 4,3 | 3.5 | 0.7680(2) | 0.67493252(36) |
42 | (3,4,6,4) + (4,6,12) | 4,3 | 3 | 0.7157(2) | 0.64536587(40) |
36 | (36) + (32,4,12) | 6,4 | 4 | 0.6808(2) | 0.55778329(40) |
15 | (32,62) + (3,6,3,6) | 4,4 | 4 | 0.6499(2) | 0.53632487(40) |
34 | (36) + (32,62) | 6,4 | 4 | 0.6329(2) | 0.51707873(70) |
16 | (3,42,6) + (3,6,3,6) | 4,4 | 4 | 0.6286(2) | 0.51891529(35) |
17 | (3,42,6) + (3,6,3,6)* | 4,4 | 4 | 0.6279(2) | 0.51769462(35) |
35 | (3,42,6) + (3,4,6,4) | 4,4 | 4 | 0.6221(2) | 0.51973831(40) |
11 | (34,6) + (32,62) | 5,4 | 4.5 | 0.6171(2) | 0.48921280(37) |
37 | (33,42) + (3,4,6,4) | 5,4 | 4.5 | 0.5885(2) | 0.47229486(38) |
30 | (32,4,3,4) + (3,4,6,4) | 5,4 | 4.5 | 0.5883(2) | 0.46573078(72) |
23 | (33,42) + (44) | 5,4 | 4.5 | 0.5720(2) | 0.45844622(40) |
22 | (33,42) + (44) | 5,4 | 4 | 0.5648(2) | 0.44528611(40) |
12 | (36) + (34,6) | 6,5 | 5 | 0.5607(2) | 0.41109890(37) |
33 | (33,42) + (32,4,3,4) | 5,5 | 5 | 0.5505(2) | 0.41628021(35) |
32 | (33,42) + (32,4,3,4) | 5,5 | 5 | 0.5504(2) | 0.41549285(36) |
31 | (36) + (32,4,3,4) | 6,5 | 5 | 0.5440(2) | 0.40379585(40) |
13 | (36) + (34,6) | 6,5 | 5.5 | 0.5407(2) | 0.38914898(35) |
21 | (36) + (33,42) | 6,5 | 5 | 0.5342(2) | 0.39491996(40) |
20 | (36) + (33,42) | 6,5 | 5.5 | 0.5258(2) | 0.38285085(38) |
This figure shows something similar to the 2-uniform lattice #37, except the polygons are not all regular—there is a rectangle in the place of the two squares—and the size of the polygons is changed. This lattice is in the isoradial representation in which each polygon is inscribed in a circle of unit radius. The two squares in the 2-uniform lattice must now be represented as a single rectangle in order to satisfy the isoradial condition. The lattice is shown by black edges, and the dual lattice by red dashed lines. The green circles show the isoradial constraint on both the original and dual lattices. The yellow polygons highlight the three types of polygons on the lattice, and the pink polygons highlight the two types of polygons on the dual lattice. The lattice has vertex types (33,42) + (3,4,6,4), while the dual lattice has vertex types (46)+(42,52)+(53)+(52,4). The critical point is where the longer bonds (on both the lattice and dual lattice) have occupation probability p = 2 sin (π/18) = 0.347296... which is the bond percolation threshold on a triangular lattice, and the shorter bonds have occupation probability 1 − 2 sin(π/18) = 0.652703..., which is the bond percolation on a hexagonal lattice. These results follow from the isoradial condition but also follow from applying the star-triangle transformation to certain stars on the honeycomb lattice. Finally, it can be generalized to having three different probabilities in the three different directions, p1, p2 and p3 for the long bonds, and,, and for the short bonds, where p1, p2 and p3 satisfy the critical surface for the inhomogeneous triangular lattice.
To the left, center, and right are: the martini lattice, the martini-A lattice, the martini-B lattice. Below: the martini covering/medial lattice, same as the 2×2, 1×1 subnet for kagome-type lattices (removed).
Some other examples of generalized bow-tie lattices (a-d) and the duals of the lattices (e-h):
Lattice | z | \overlinez | Site percolation threshold | Bond percolation threshold | |
---|---|---|---|---|---|
martini (3,92)+(93) | 3 | 3 | 0.764826..., 1 + p4 − 3p3 = 0 | 0.707107... = 1/ | |
bow-tie (c) | 3,4 | 3 | 0.672929..., 1 − 2p3 − 2p4 − 2p5 − 7p6 + 18p7 + 11p8 − 35p9 + 21p10 − 4p11 = 0 | ||
bow-tie (d) | 3,4 | 3 | 0.625457..., 1 − 2p2 − 3p3 + 4p4 − p5 = 0 | ||
martini-A (3,72)+(3,73) | 3,4 | 3 | 1/ | 0.625457..., 1 − 2p2 − 3p3 + 4p4 − p5 = 0 | |
bow-tie dual (e) | 3,4 | 3 | 0.595482..., 1-pcbond (bow-tie (a)) | ||
bow-tie (b) | 3,4,6 | 3 | 0.533213..., 1 − p − 2p3 -4p4-4p5+156+ 13p7-36p8+19p9+ p10 + p11=0 | ||
martini covering/medial (33,9) + (3,9,3,9) | 4 | 4 | 0.707107... = 1/ | 0.57086651(33) | |
martini-B (3,5,3,52) + (3,52) | 3, 5 | 4 | 0.618034... = 2/(1 +), 1- p2 − p = 0 | ||
bow-tie dual (f) | 3,4,8 | 4 | 0.466787..., 1 − pcbond (bow-tie (b)) | ||
bow-tie (a) (32,4,32,4) + (3,4,3) | 4,6 | 5 | 0.5472(2), 0.5479148(7) | 0.404518..., 1 − p − 6p2 + 6p3 − p5 = 0 | |
bow-tie dual (h) | 3,6,8 | 5 | 0.374543..., 1 − pcbond(bow-tie (d)) | ||
bow-tie dual (g) | 3,6,10 | 5 | 0.547... = pcsite(bow-tie(a)) | 0.327071..., 1 − pcbond(bow-tie (c)) | |
martini dual (33) + (39) | 3,9 | 6 | 0.292893... = 1 − 1/ | ||
Lattice | z | \overlinez | Site percolation threshold | Bond percolation threshold |
---|---|---|---|---|
(4, 6, 12) covering/medial | 4 | 4 | pcbond(4, 6, 12) = 0.693731... | 0.5593140(2), 0.559315(1) |
(4, 82) covering/medial, square kagome | 4 | 4 | pcbond(4,82) = 0.676803... | 0.544798017(4), 0.54479793(34) |
(34, 6) medial | 4 | 4 | 0.5247495(5) | |
(3,4,6,4) medial | 4 | 4 | 0.51276 | |
(32, 4, 3, 4) medial | 4 | 4 | 0.512682929(8) | |
(33, 42) medial | 4 | 4 | 0.5125245984(9) | |
square covering (non-planar) | 6 | 6 | 0.3371(1) | |
square matching lattice (non-planar) | 8 | 8 | 1 − pcsite(square) = 0.407253... | 0.25036834(6) |
Lattice | z | \overlinez | Site percolation threshold | Bond percolation threshold | ||||||
---|---|---|---|---|---|---|---|---|---|---|
K(2,2) | 4 | 4 | 0.51253(14) | 0.44778(15) | ||||||
K(3,3) | 6 | 6 | 0.43760(15) | 0.35502(15) | ||||||
K(4,4) | 8 | 8 | 0.38675(7) | 0.29427(12) | ||||||
K(5,5) | 10 | 10 | 0.35115(13) | 0.25159(13) | - | K(6,6) | 12 | 12 | 0.32232(13) | 0.21942(11) |
K(7,7) | 14 | 14 | 0.30052(14) | 0.19475(9) | ||||||
K(8,8) | 16 | 16 | 0.28103(11) | 0.17496(10) | ||||||
The 2 x 2, 3 x 3, and 4 x 4 subnet kagome lattices. The 2 × 2 subnet is also known as the "triangular kagome" lattice.[12]
Lattice | z | \overlinez | Site percolation threshold | Bond percolation threshold | |
---|---|---|---|---|---|
checkerboard – 2 × 2 subnet | 4,3 | 0.596303(1)[13] | |||
checkerboard – 4 × 4 subnet | 4,3 | 0.633685(9) | |||
checkerboard – 8 × 8 subnet | 4,3 | 0.642318(5) | |||
checkerboard – 16 × 16 subnet | 4,3 | 0.64237(1) | |||
checkerboard – 32 × 32 subnet | 4,3 | 0.64219(2) | |||
checkerboard – infty | 4,3 | 0.642216(10) | |||
kagome – 2 × 2 subnet = (3, 122) covering/medial | 4 | pcbond (3, 122) = 0.74042077... | 0.600861966960(2), 0.6008624(10), 0.60086193(3) | ||
kagome – 3 × 3 subnet | 4 | 0.6193296(10), 0.61933176(5), 0.61933044(32) | |||
kagome – 4 × 4 subnet | 4 | 0.625365(3), 0.62536424(7) | |||
kagome – infty | 4 | 0.628961(2) | |||
kagome – (1 × 1):(2 × 2) subnet = martini covering/medial | 4 | pcbond(martini) = 1/ = 0.707107... | 0.57086648(36) | ||
kagome – (1 × 1):(3 × 3) subnet | 4,3 | 0.728355596425196... | 0.58609776(37) | ||
kagome – (1 × 1):(4 × 4) subnet | 0.738348473943256... | ||||
kagome – (1 × 1):(5 × 5) subnet | 0.743548682503071... | ||||
kagome – (1 × 1):(6 × 6) subnet | 0.746418147634282... | ||||
kagome – (2 × 2):(3 × 3) subnet | 0.61091770(30) | ||||
triangular – 2 × 2 subnet | 6,4 | 0.471628788 | |||
triangular – 3 × 3 subnet | 6,4 | 0.509077793 | |||
triangular – 4 × 4 subnet | 6,4 | 0.524364822 | |||
triangular – 5 × 5 subnet | 6,4 | 0.5315976(10) | |||
triangular – infty | 6,4 | 0.53993(1) |
(For more results and comparison to the jamming density, see Random sequential adsorption)
system | z | Site threshold |
---|---|---|
dimers on a honeycomb lattice | 3 | 0.69, 0.6653 [14] |
dimers on a triangular lattice | 6 | 0.4872(8),[15] 0.4873, |
aligned linear dimers on a triangular lattice | 6 | 0.5157(2) [16] |
aligned linear 4-mers on a triangular lattice | 6 | 0.5220(2) |
aligned linear 8-mers on a triangular lattice | 6 | 0.5281(5) |
aligned linear 12-mers on a triangular lattice | 6 | 0.5298(8) |
linear 16-mers on a triangular lattice | 6 | aligned 0.5328(7) |
linear 32-mers on a triangular lattice | 6 | aligned 0.5407(6) |
linear 64-mers on a triangular lattice | 6 | aligned 0.5455(4) |
aligned linear 80-mers on a triangular lattice | 6 | 0.5500(6) |
aligned linear k \longrightarrowinfty | 6 | 0.582(9) |
dimers and 5% impurities, triangular lattice | 6 | 0.4832(7)[17] |
parallel dimers on a square lattice | 4 | 0.5863 |
dimers on a square lattice | 4 | 0.5617,[18] 0.5618(1),[19] 0.562,[20] 0.5713 |
linear 3-mers on a square lattice | 4 | 0.528 |
3-site 120° angle, 5% impurities, triangular lattice | 6 | 0.4574(9) |
3-site triangles, 5% impurities, triangular lattice | 6 | 0.5222(9) |
linear trimers and 5% impurities, triangular lattice | 6 | 0.4603(8) |
linear 4-mers on a square lattice | 4 | 0.504 |
linear 5-mers on a square lattice | 4 | 0.490 |
linear 6-mers on a square lattice | 4 | 0.479 |
linear 8-mers on a square lattice | 4 | 0.474, 0.4697(1) |
linear 10-mers on a square lattice | 4 | 0.469 |
linear 16-mers on a square lattice | 4 | 0.4639(1) |
linear 32-mers on a square lattice | 4 | 0.4747(2) |
Here, we are dealing with networks that are obtained by covering a lattice with dimers, and then consider bond percolation on the remaining bonds. In discrete mathematics, this problem is known as the 'perfect matching' or the 'dimer covering' problem.
system | z | Bond threshold |
---|---|---|
Parallel covering, square lattice | 6 | 0.381966...[22] |
Shifted covering, square lattice | 6 | 0.347296... |
Staggered covering, square lattice | 6 | 0.376825(2) |
Random covering, square lattice | 6 | 0.367713(2) |
Parallel covering, triangular lattice | 10 | 0.237418... |
Staggered covering, triangular lattice | 10 | 0.237497(2) |
Random covering, triangular lattice | 10 | 0.235340(1) |
System is composed of ordinary (non-avoiding) random walks of length l on the square lattice.[23]
l (polymer length) | z | Bond percolation |
---|---|---|
1 | 4 | 0.5(exact)[24] |
2 | 4 | 0.47697(4) |
4 | 4 | 0.44892(6) |
8 | 4 | 0.41880(4) |
k | z | Site thresholds | Bond thresholds |
---|---|---|---|
1 | 4 | 0.593(2)[25] | 0.5009(2) |
2 | 4 | 0.564(2) | 0.4859(2) |
3 | 4 | 0.552(2) | 0.4732(2) |
4 | 4 | 0.542(2) | 0.4630(2) |
5 | 4 | 0.531(2) | 0.4565(2) |
6 | 4 | 0.522(2) | 0.4497(2) |
7 | 4 | 0.511(2) | 0.4423(2) |
8 | 4 | 0.502(2) | 0.4348(2) |
9 | 4 | 0.493(2) | 0.4291(2) |
10 | 4 | 0.488(2) | 0.4232(2) |
11 | 4 | 0.482(2) | 0.4159(2) |
12 | 4 | 0.476(2) | 0.4114(2) |
13 | 4 | 0.471(2) | 0.4061(2) |
14 | 4 | 0.467(2) | 0.4011(2) |
15 | 4 | 0.4011(2) | 0.3979(2) |
width=12% | System | Φc | ηc | nc |
---|---|---|---|---|
Disks of radius r | 0.67634831(2), 0.6763475(6),[26] 0.676339(4),[27] 0.6764(4),[28] 0.6766(5),[29] 0.676(2),[30] 0.679, 0.674[31] 0.676,[32] 0.680[33] | 1.1280867(5),[34] 1.1276(9), 1.12808737(6), 1.128085(2), 1.128059(12), 1.13, 0.8[35] | 1.43632505(10),[36] 1.43632545(8), 1.436322(2), 1.436289(16), 1.436320(4),[37] 1.436323(3),[38] 1.438(2),[39] 1.216 (48)[40] | |
Ellipses, ε = 1.5 | 0.0043 | 0.00431 | 2.059081(7) | |
Ellipses, ε = | 0.65 | 1.05 | 2.28 | |
Ellipses, ε = 2 | 0.6287945(12), 0.63[41] | 0.991000(3), 0.99 | 2.523560(8), 2.5 | |
Ellipses, ε = 3 | 0.56 | 0.82 | 3.157339(8), 3.14 | |
Ellipses, ε = 4 | 0.5 | 0.69 | 3.569706(8), 3.5 | |
Ellipses, ε = 5 | 0.455,[42] 0.455, 0.46 | 0.607 | 3.861262(12), 3.86 | |
Ellipses, ε = 6 | 4.079365(17) | |||
Ellipses, ε = 7 | 4.249132(16) | |||
Ellipses, ε = 8 | 4.385302(15) | |||
Ellipses, ε = 9 | 4.497000(8) | |||
Ellipses, ε = 10 | 0.301, 0.303, 0.30 | 0.358 0.36 | 4.590416(23) 4.56, 4.5 | |
Ellipses, ε = 15 | 4.894752(30) | |||
Ellipses, ε = 20 | 0.178, 0.17 | 0.196 | 5.062313(39), 4.99 | |
Ellipses, ε = 50 | 0.081 | 0.084 | 5.393863(28), 5.38 | |
Ellipses, ε = 100 | 0.0417 | 0.0426 | 5.513464(40), 5.42 | |
Ellipses, ε = 200 | 0.021 | 0.0212 | 5.40 | |
0.0043 | 0.00431 | 5.624756(22), 5.5 | ||
Superellipses, ε = 1, m = 1.5 | 0.671 | |||
Superellipses, ε = 2.5, m = 1.5 | 0.599 | |||
Superellipses, ε = 5, m = 1.5 | 0.469 | |||
Superellipses, ε = 10, m = 1.5 | 0.322 | |||
disco-rectangles, ε = 1.5 | 1.894 | |||
disco-rectangles, ε = 2 | 2.245 | |||
Aligned squares of side \ell | 0.66675(2), 0.66674349(3),[43] 0.66653(1), 0.6666(4),[44] 0.668 | 1.09884280(9), 1.0982(3),[45] 1.098(1) | 1.09884280(9), 1.0982(3), 1.098(1) | |
Randomly oriented squares | 0.62554075(4), 0.6254(2) 0.625, | 0.9822723(1), 0.9819(6) 0.982278(14)[46] | 0.9822723(1), 0.9819(6) 0.982278(14) | |
Randomly oriented squares within angle \pi/4 | 0.6255(1) | 0.98216(15) | ||
Rectangles, ε = 1.1 | 0.624870(7) | 0.980484(19) | 1.078532(21) | |
Rectangles, ε = 2 | 0.590635(5) | 0.893147(13) | 1.786294(26) | |
Rectangles, ε = 3 | 0.5405983(34) | 0.777830(7) | 2.333491(22) | |
Rectangles, ε = 4 | 0.4948145(38) | 0.682830(8) | 2.731318(30) | |
Rectangles, ε = 5 | 0.4551398(31), 0.451 | 0.607226(6) | 3.036130(28) | |
Rectangles, ε = 10 | 0.3233507(25), 0.319 | 0.3906022(37) | 3.906022(37) | |
Rectangles, ε = 20 | 0.2048518(22) | 0.2292268(27) | 4.584535(54) | |
Rectangles, ε = 50 | 0.09785513(36) | 0.1029802(4) | 5.149008(20) | |
Rectangles, ε = 100 | 0.0523676(6) | 0.0537886(6) | 5.378856(60) | |
Rectangles, ε = 200 | 0.02714526(34) | 0.02752050(35) | 5.504099(69) | |
Rectangles, ε = 1000 | 0.00559424(6) | 0.00560995(6) | 5.609947(60) | |
Sticks (needles) of length \ell | 5.63726(2),[47] 5.6372858(6), 5.637263(11), 5.63724(18) [48] | |||
sticks with log-normal length dist. STD=0.5 | 4.756(3) | |||
sticks with correlated angle dist. s=0.5 | 6.6076(4) | |||
Power-law disks, x = 2.05 | 0.993(1)[49] | 4.90(1) | 0.0380(6) | |
Power-law disks, x = 2.25 | 0.8591(5) | 1.959(5) | 0.06930(12) | |
Power-law disks, x = 2.5 | 0.7836(4) | 1.5307(17) | 0.09745(11) | |
Power-law disks, x = 4 | 0.69543(6) | 1.18853(19) | 0.18916(3) | |
Power-law disks, x = 5 | 0.68643(13) | 1.1597(3) | 0.22149(8) | |
Power-law disks, x = 6 | 0.68241(8) | 1.1470(1) | 0.24340(5) | |
Power-law disks, x = 7 | 0.6803(8) | 1.140(6) | 0.25933(16) | |
Power-law disks, x = 8 | 0.67917(9) | 1.1368(5) | 0.27140(7) | |
Power-law disks, x = 9 | 0.67856(12) | 1.1349(4) | 0.28098(9) | |
Voids around disks of radius r | 1 − Φc(disk) = 0.32355169(2), 0.318(2), 0.3261(6)[50] | |||
For disks,
nc=4r2N/L2
2r
N
L
For disks,
ηc=\pir2N/L2=(\pi/4)nc
4ηc
rc=L\sqrt{
ηc | |
\piN |
ηc=\piabN/L2
\epsilon=a/b
a>b
ηc=\ellmN/L2
\ell
m
\epsilon=\ell/m
\ell>m
ηc=\pixN/(4L2(x-2))
\hbox{Prob(radius}\geR)=R-x
R\ge1
\phic=1-
-ηc | |
e |
For disks, Ref.[30] use
\phic=1-e-\pi
x
1/\sqrt{2}
nc=\ell2N/L2
\ell=2a
For ellipses,
nc=(4\epsilon/\pi)ηc
For void percolation,
\phic=
-ηc | |
e |
For more ellipse values, see [41]
For more rectangle values, see
Both ellipses and rectangles belong to the superellipses, with
|x/a|2m+|y/b|2m=1
For the monodisperse particle systems, the percolation thresholds of concave-shaped superdisks are obtained as seen in [51]
For binary dispersions of disks, see [26] [52] [53]
Lattice | z | \overlinez | Site percolation threshold | Bond percolation threshold | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Relative neighborhood graph | 2.5576 | 0.796(2)[54] | 0.771(2) | |||||||
3 | 0.71410(2),[55] 0.7151* | 0.68,[56] 0.6670(1), 0.6680(5), 0.666931(5) | ||||||||
Voronoi covering/medial | 4 | 0.666931(2) | 0.53618(2) | |||||||
Randomized kagome/square-octagon, fraction r= | 4 | 0.6599 | ||||||||
Penrose rhomb dual | 4 | 0.6381(3) | 0.5233(2) | |||||||
Gabriel graph | 4 | 0.6348(8),[57] 0.62[58] | 0.5167(6), 0.52 | |||||||
Random-line tessellation, dual | 4 | 0.586(2)[59] | ||||||||
4 | 0.5837(3), 0.0.5610(6) (weighted bonds)[60] 0.58391(1)[61] | 0.483(5),[62] 0.4770(2) | ||||||||
Octagonal lattice, "chemical" links (Ammann–Beenker tiling) | 4 | 0.585[63] | 0.48 | |||||||
Octagonal lattice, "ferromagnetic" links | 5.17 | 0.543 | 0.40 | |||||||
Dodecagonal lattice, "chemical" links | 3.63 | 0.628 | 0.54 | |||||||
Dodecagonal lattice, "ferromagnetic" links | 4.27 | 0.617 | 0.495 | |||||||
6 | [64] | 0.3333(1)[65] 0.3326(5),[66] 0.333069(2) | - | Uniform Infinite Planar Triangulation[67] | 6 | (2 – 1)/11 ≈ 0.2240[68] [69] | ||||
Assuming power-law correlations
C(r)\sim|r|-\alpha
lattice | α | Site percolation threshold | Bond percolation threshold |
---|---|---|---|
square | 3 | 0.561406(4)[70] | |
square | 2 | 0.550143(5) | |
square | 0.1 | 0.508(4) | |
h is the thickness of the slab, h × ∞ × ∞. Boundary conditions (b.c.) refer to the top and bottom planes of the slab.
Lattice | h | z | \overlinez | Site percolation threshold | Bond percolation threshold |
---|---|---|---|---|---|
simple cubic (open b.c.) | 2 | 5 | 5 | 0.47424, 0.4756[71] | |
bcc (open b.c.) | 2 | 0.4155 | |||
hcp (open b.c.) | 2 | 0.2828 | |||
diamond (open b.c.) | 2 | 0.5451 | |||
simple cubic (open b.c.) | 3 | 0.4264 | |||
bcc (open b.c.) | 3 | 0.3531 | |||
bcc (periodic b.c.) | 3 | 0.21113018(38) | |||
hcp (open b.c.) | 3 | 0.2548 | |||
diamond (open b.c.) | 3 | 0.5044 | |||
simple cubic (open b.c.) | 4 | 0.3997,[72] 0.3998 | |||
bcc (open b.c.) | 4 | 0.3232 | |||
bcc (periodic b.c.) | 4 | 0.20235168(59) | |||
hcp (open b.c.) | 4 | 0.2405 | |||
diamond (open b.c.) | 4 | 0.4842 | |||
simple cubic (periodic b.c.) | 5 | 6 | 6 | 0.278102(5) | |
simple cubic (open b.c.) | 6 | 0.3708 | |||
simple cubic (periodic b.c.) | 6 | 6 | 6 | 0.272380(2) | |
bcc (open b.c.) | 6 | 0.2948 | |||
hcp (open b.c.) | 6 | 0.2261 | |||
diamond (open b.c.) | 6 | 0.4642 | |||
simple cubic (periodic b.c.) | 7 | 6 | 6 | 0.3459514(12)[73] | 0.268459(1) |
simple cubic (open b.c.) | 8 | 0.3557, 0.3565 | |||
simple cubic (periodic b.c.) | 8 | 6 | 6 | 0.265615(5) | |
bcc (open b.c.) | 8 | 0.2811 | |||
hcp (open b.c.) | 8 | 0.2190 | |||
diamond (open b.c.) | 8 | 0.4549 | |||
simple cubic (open b.c.) | 12 | 0.3411 | |||
bcc (open b.c.) | 12 | 0.2688 | |||
hcp (open b.c.) | 12 | 0.2117 | |||
diamond (open b.c.) | 12 | 0.4456 | |||
simple cubic (open b.c.) | 16 | 0.3219, 0.3339 | |||
bcc (open b.c.) | 16 | 0.2622 | |||
hcp (open b.c.) | 16 | 0.2086 | |||
diamond (open b.c.) | 16 | 0.4415 | |||
simple cubic (open b.c.) | 32 | 0.3219, | |||
simple cubic (open b.c.) | 64 | 0.3165, | |||
simple cubic (open b.c.) | 128 | 0.31398, | |||
Lattice | z | \overlinez | filling factor* | filling fraction* | width=41% | Site percolation threshold | width=25% | Bond percolation threshold |
---|---|---|---|---|---|---|---|---|
(10,3)-a oxide (or site-bond)[74] | 23 32 | 2.4 | 0.748713(22) | = (pc,bond(10,3) – a) = 0.742334(25) | ||||
(10,3)-b oxide (or site-bond) | 23 32 | 2.4 | 0.233[75] | 0.174 | 0.745317(25) | = (pc,bond(10,3) – b) = 0.739388(22) | ||
silicon dioxide (diamond site-bond) | 4,22 | 2 | 0.638683(35) | |||||
Modified (10,3)-b | 32,2 | 2 | 0.627[76] | |||||
(8,3)-a | 3 | 3 | 0.577962(33)[77] | 0.555700(22) | ||||
(10,3)-a gyroid[78] | 3 | 3 | 0.571404(40) | 0.551060(37) | ||||
(10,3)-b | 3 | 3 | 0.565442(40) | 0.546694(33) | ||||
cubic oxide (cubic site-bond) | 6,23 | 3.5 | 0.524652(50) | |||||
bcc dual | 4 | 0.4560(6) | 0.4031(6) | |||||
ice Ih | 4 | 4 | π / 16 = 0.340087 | 0.147 | 0.433(11)[79] | 0.388(10)[80] | ||
diamond (Ice Ic) | 4 | 4 | π / 16 = 0.340087 | 0.1462332 | 0.4299(8), 0.4299870(4),[81],[82] 0.4297(4) [83] 0.4301(4),[84] 0.428(4), 0.425(15),[85] 0.425, 0.436(12) | 0.3895892(5), 0.3893(2), 0.3893(3), 0.388(5), 0.3886(5), 0.388(5)[86] 0.390(11) | ||
diamond dual | 6 | 0.3904(5)[87] | 0.2350(5) | |||||
3D kagome (covering graph of the diamond lattice) | 6 | π / 12 = 0.37024 | 0.1442 | 0.3895(2) =pc(site) for diamond dual and pc(bond) for diamond lattice | 0.2709(6) | |||
Bow-tie stack dual | 5 | 0.3480(4) | 0.2853(4) | |||||
honeycomb stack | 5 | 5 | 0.3701(2) | 0.3093(2) | ||||
octagonal stack dual | 5 | 5 | 0.3840(4) | 0.3168(4) | ||||
pentagonal stack | 5 | 0.3394(4) | 0.2793(4) | |||||
kagome stack | 6 | 6 | 0.453450 | 0.1517 | 0.3346(4) | 0.2563(2) | ||
fcc dual | 42,8 | 5 | 0.3341(5) | 0.2703(3) | ||||
simple cubic | 6 | 6 | π / 6 = 0.5235988 | 0.1631574 | 0.307(10), 0.307, 0.3115(5),[88] 0.3116077(2),[89] 0.311604(6),[90] 0.311605(5),[91] 0.311600(5),[92] 0.3116077(4),[93] 0.3116081(13),[94] 0.3116080(4), 0.3116060(48), 0.3116004(35),[95] 0.31160768(15) | 0.247(5), 0.2479(4), 0.2488(2),[96] 0.24881182(10), 0.2488125(25), 0.2488126(5),[97] | ||
hcp dual | 44,82 | 5 | 0.3101(5) | 0.2573(3) | ||||
dice stack | 5,8 | 6 | π / 9 = 0.604600 | 0.1813 | 0.2998(4) | 0.2378(4) | ||
bow-tie stack | 7 | 7 | 0.2822(6) | 0.2092(4) | ||||
Stacked triangular / simple hexagonal | 8 | 8 | 0.26240(5),[98] 0.2625(2),[99] 0.2623(2) | 0.18602(2), 0.1859(2) | ||||
octagonal (union-jack) stack | 6,10 | 8 | 0.2524(6) | 0.1752(2) | ||||
bcc | 8 | 8 | 0.243(10), 0.243, 0.2459615(10), 0.2460(3),[100] 0.2464(7),[101] 0.2458(2) | 0.178(5), 0.1795(3), 0.18025(15), 0.1802875(10) | ||||
simple cubic with 3NN (same as bcc) | 8 | 8 | 0.2455(1), 0.2457(7)[102] | |||||
fcc, D3 | 12 | 12 | π / (3) = 0.740480 | 0.147530 | 0.195, 0.198(3),[103] 0.1998(6), 0.1992365(10),[104] 0.19923517(20), 0.1994(2), 0.199236(4)[105] | 0.1198(3), 0.1201635(10) 0.120169(2) | ||
12 | 12 | π / (3) = 0.740480 | 0.147545 | 0.195(5), 0.1992555(10)[106] | 0.1201640(10), 0.119(2) | |||
La2−x Srx Cu O4 | 12 | 12 | 0.19927(2)[107] | |||||
simple cubic with 2NN (same as fcc) | 12 | 12 | 0.1991(1) | |||||
simple cubic with NN+4NN | 12 | 12 | 0.15040(12),[108] 0.1503793(7) | 0.1068263(7)[109] | ||||
simple cubic with 3NN+4NN | 14 | 14 | 0.20490(12) | 0.1012133(7) | ||||
bcc NN+2NN (= sc(3,4) sc-3NN+4NN) | 14 | 14 | 0.175, 0.1686,(20) 0.1759432(8) | 0.0991(5), 0.1012133(7),[110] 0.1759432(8) | ||||
Nanotube fibers on FCC | 14 | 14 | 0.1533(13)[111] | |||||
simple cubic with NN+3NN | 14 | 14 | 0.1420(1)[112] | 0.0920213(7) | ||||
simple cubic with 2NN+4NN | 18 | 18 | 0.15950(12) | 0.0751589(9) | ||||
simple cubic with NN+2NN | 18 | 18 | 0.137, 0.136, 0.1372(1), 0.13735(5), 0.1373045(5) | 0.0752326(6) | ||||
fcc with NN+2NN (=sc-2NN+4NN) | 18 | 18 | 0.136, 0.1361408(8) | 0.0751589(9) | ||||
simple cubic with short-length correlation | 6+ | 6+ | 0.126(1)[113] | |||||
simple cubic with NN+3NN+4NN | 20 | 20 | 0.11920(12) | 0.0624379(9) | ||||
simple cubic with 2NN+3NN | 20 | 20 | 0.1036(1) | 0.0629283(7) | ||||
simple cubic with NN+2NN+4NN | 24 | 24 | 0.11440(12) | 0.0533056(6) | ||||
simple cubic with 2NN+3NN+4NN | 26 | 26 | 0.11330(12) | 0.0474609(9) | ||||
simple cubic with NN+2NN+3NN | 26 | 26 | 0.097, 0.0976(1), 0.0976445(10), 0.0976444(6) | 0.0497080(10) | ||||
bcc with NN+2NN+3NN | 26 | 26 | 0.095, 0.0959084(6) | 0.0492760(10) | ||||
simple cubic with NN+2NN+3NN+4NN | 32 | 32 | 0.10000(12), 0.0801171(9) | 0.0392312(8) | ||||
fcc with NN+2NN+3NN | 42 | 42 | 0.061, 0.0610(5),[114] 0.0618842(8) | 0.0290193(7) | ||||
fcc with NN+2NN+3NN+4NN | 54 | 54 | 0.0500(5) | |||||
sc-1,2,3,4,5 simple cubic with NN+2NN+3NN+4NN+5NN | 56 | 56 | 0.0461815(5) | 0.0210977(7) | ||||
sc-1,...,6 (2x2x2 cube) | 80 | 80 | 0.0337049(9), 0.03373(13) | 0.0143950(10) | ||||
sc-1,...,7 | 92 | 92 | 0.0290800(10) | 0.0123632(8) | ||||
sc-1,...,8 | 122 | 122 | 0.0218686(6) | 0.0091337(7) | ||||
sc-1,...,9 | 146 | 146 | 0.0184060(10) | 0.0075532(8) | ||||
sc-1,...,10 | 170 | 170 | 0.0064352(8) | |||||
sc-1,...,11 | 178 | 178 | 0.0061312(8) | |||||
sc-1,...,12 | 202 | 202 | 0.0053670(10) | |||||
sc-1,...,13 | 250 | 250 | 0.0042962(8) | |||||
3x3x3 cube | 274 | 274 | φc= 0.76564(1), pc = 0.0098417(7), 0.009854(6) | |||||
4x4x4 cube | 636 | 636 | φc=0.76362(1), pc = 0.0042050(2), 0.004217(3) | |||||
5x5x5 cube | 1214 | 1250 | φc=0.76044(2), pc = 0.0021885(2), 0.002185(4) | |||||
6x6x6 cube | 2056 | 2056 | 0.001289(2) | |||||
Filling factor = fraction of space filled by touching spheres at every lattice site (for systems with uniform bond length only). Also called Atomic Packing Factor.
Filling fraction (or Critical Filling Fraction) = filling factor * pc(site).
NN = nearest neighbor, 2NN = next-nearest neighbor, 3NN = next-next-nearest neighbor, etc.
kxkxk cubes are cubes of occupied sites on a lattice, and are equivalent to extended-range percolation of a cube of length (2k+1), with edges and corners removed, with z = (2k+1)3-12(2k-1)-9 (center site not counted in z).
Question: the bond thresholds for the hcp and fcc latticeagree within the small statistical error. Are they identical,and if not, how far apart are they? Which threshold is expected to be bigger? Similarly for the ice and diamond lattices. See [115]
Here, one distorts a regular lattice of unit spacing by moving vertices uniformly within the cube
(x-\alpha,x+\alpha),(y-\alpha,y+\alpha),(z-\alpha,z+\alpha)
d
Lattice | \overlinez | \alpha | d | Site percolation threshold | Bond percolation threshold |
---|---|---|---|---|---|
cubic | 0.05 | 1.0 | 0.60254(3) | ||
0.1 | 1.00625 | 0.58688(4) | |||
0.15 | 1.025 | 0.55075(2) | |||
0.175 | 1.05 | 0.50645(5) | |||
0.2 | 1.1 | 0.44342(3) | |||
Site threshold is the number of overlapping objects per lattice site. The coverage φc is the net fraction of sites covered, and v is the volume (number of cubes). Overlapping cubes are given in the section on thresholds of 3D lattices. Here z is the coordination number to k-mers of either orientation, with
z=6k2+18k-4
System | k | z | Site coverage φc | Site percolation threshold pc |
---|---|---|---|---|
1 x 2 dimer, cubic lattice | 2 | 56 | 0.24542 | 0.045847(2) |
1 x 3 trimer, cubic lattice | 3 | 104 | 0.19578 | 0.023919(9) |
1 x 4 stick, cubic lattice | 4 | 164 | 0.16055 | 0.014478(7) |
1 x 5 stick, cubic lattice | 5 | 236 | 0.13488 | 0.009613(8) |
1 x 6 stick, cubic lattice | 6 | 320 | 0.11569 | 0.006807(2) |
2 x 2 plaquette, cubic lattice | 2 | 0.22710 | 0.021238(2) | |
3 x 3 plaquette, cubic lattice | 3 | 0.18686 | 0.007632(5) | |
4 x 4 plaquette, cubic lattice | 4 | 0.16159 | 0.003665(3) | |
5 x 5 plaquette, cubic lattice | 5 | 0.14316 | 0.002058(5) | |
6 x 6 plaquette, cubic lattice | 6 | 0.12900 | 0.001278(5) | |
The coverage is calculated from
pc
\phic=
3k | |
1-(1-p | |
c) |
\phic=
3k2 | |
1-(1-p | |
c) |
All overlapping except for jammed spheres and polymer matrix.
System | Φc | ηc | |
---|---|---|---|
Spheres of radius r | 0.289,[117] 0.293,[118] 0.286,[119] 0.295. 0.2895(5),[120] 0.28955(7),[121] 0.2896(7),[122] 0.289573(2),[123] 0.2896,[124] 0.2854, 0.290,[125] 0.290[126] | 0.3418(7), 0.3438(13), 0.341889(3), 0.3360, 0.34189(2) [corrected], 0.341935(8), 0.335, | |
Oblate ellipsoids with major radius r and aspect ratio | 0.2831[127] | 0.3328 | |
Prolate ellipsoids with minor radius r and aspect ratio | 0.2757, 0.2795, 0.2763 | 0.3278 | |
Oblate ellipsoids with major radius r and aspect ratio 2 | 0.2537, 0.2629, 0.254 | 0.3050 | |
Prolate ellipsoids with minor radius r and aspect ratio 2 | 0.2537, 0.2618, 0.25(2),[128] 0.2507 | 0.3035, 0.29(3) | |
Oblate ellipsoids with major radius r and aspect ratio 3 | 0.2289 | 0.2599 | |
Prolate ellipsoids with minor radius r and aspect ratio 3 | 0.2033, 0.2244, 0.20(2) | 0.2541, 0.22(3) | |
Oblate ellipsoids with major radius r and aspect ratio 4 | 0.2003 | 0.2235 | |
Prolate ellipsoids with minor radius r and aspect ratio 4 | 0.1901, 0.16(2) | 0.2108, 0.17(3) | |
Oblate ellipsoids with major radius r and aspect ratio 5 | 0.1757 | 0.1932 | |
Prolate ellipsoids with minor radius r and aspect ratio 5 | 0.1627, 0.13(2) | 0.1776, 0.15(2) | |
Oblate ellipsoids with major radius r and aspect ratio 10 | 0.0895, 0.1058 | 0.1118 | |
Prolate ellipsoids with minor radius r and aspect ratio 10 | 0.0724, 0.08703, 0.07(2) | 0.09105, 0.07(2) | |
Oblate ellipsoids with major radius r and aspect ratio 100 | 0.01248 | 0.01256 | |
Prolate ellipsoids with minor radius r and aspect ratio 100 | 0.006949 | 0.006973 | |
Oblate ellipsoids with major radius r and aspect ratio 1000 | 0.001275 | 0.001276 | |
Oblate ellipsoids with major radius r and aspect ratio 2000 | 0.000637 | 0.000637 | |
Spherocylinders with H/D = 1 | 0.2439(2) | ||
Spherocylinders with H/D = 4 | 0.1345(1) | ||
Spherocylinders with H/D = 10 | 0.06418(20) | ||
Spherocylinders with H/D = 50 | 0.01440(8) | ||
Spherocylinders with H/D = 100 | 0.007156(50) | ||
Spherocylinders with H/D = 200 | 0.003724(90) | ||
Aligned cylinders | 0.2819(2) | 0.3312(1)[129] | |
Aligned cubes of side \ell=2a | 0.2773(2) 0.27727(2), 0.27730261(79) | 0.3247(3), 0.3248(3), 0.32476(4) 0.324766(1) | |
Randomly oriented icosahedra | 0.3030(5) | ||
Randomly oriented dodecahedra | 0.2949(5) | ||
Randomly oriented octahedra | 0.2514(6) | ||
Randomly oriented cubes of side \ell=2a | 0.2168(2) 0.2174, | 0.2444(3), 0.2443(5)[130] | |
Randomly oriented tetrahedra | 0.1701(7) | ||
Randomly oriented disks of radius r (in 3D) | 0.9614(5)[131] | ||
Randomly oriented square plates of side \sqrt{\pi}r | 0.8647(6) | ||
Randomly oriented triangular plates of side \sqrt{2\pi}/31/4r | 0.7295(6) | ||
Jammed spheres (average z = 6) | 0.183(3), 0.1990,[132] see also contact network of jammed spheres below. | 0.59(1) (volume fraction of all spheres) |
ηc=(4/3)\pir3N/L3
\phic=1-
-ηc | |
e |
For disks and plates, these are effective volumes and volume fractions.
For void ("Swiss-Cheese" model),
\phic=
-ηc | |
e |
For more results on void percolation around ellipsoids and elliptical plates, see.
For more ellipsoid percolation values see.[127]
For spherocylinders, H/D is the ratio of the height to the diameter of the cylinder, which is then capped by hemispheres. Additional values are given in.[122]
For superballs, m is the deformation parameter, the percolation values are given in.,[133] [134] In addition, the thresholds of concave-shaped superballs are also determined in [51]
For cuboid-like particles (superellipsoids), m is the deformation parameter, more percolation values are given in.
Void percolation refers to percolation in the space around overlapping objects. Here
\phic
ηc
\phic=
-ηc | |
e |
ηc
System | Φc | ηc | |
---|---|---|---|
Voids around disks of radius r | 22.86(2) | ||
Voids around randomly oriented tetrahedra | 0.0605(6) | ||
Voids around oblate ellipsoids of major radius r and aspect ratio 32 | 0.5308(7) | 0.6333 | |
Voids around oblate ellipsoids of major radius r and aspect ratio 16 | 0.3248(5) | 1.125 | |
Voids around oblate ellipsoids of major radius r and aspect ratio 10 | 1.542(1) | ||
Voids around oblate ellipsoids of major radius r and aspect ratio 8 | 0.1615(4) | 1.823 | |
Voids around oblate ellipsoids of major radius r and aspect ratio 4 | 0.0711(2) | 2.643, 2.618(5) | |
Voids around oblate ellipsoids of major radius r and aspect ratio 2 | 3.239(4) | ||
Voids around prolate ellipsoids of aspect ratio 8 | 0.0415(7) | ||
Voids around prolate ellipsoids of aspect ratio 6 | 0.0397(7) | ||
Voids around prolate ellipsoids of aspect ratio 4 | 0.0376(7) | ||
Voids around prolate ellipsoids of aspect ratio 3 | 0.03503(50) | ||
Voids around prolate ellipsoids of aspect ratio 2 | 0.0323(5) | ||
Voids around aligned square prisms of aspect ratio 2 | 0.0379(5) | ||
Voids around randomly oriented square prisms of aspect ratio 20 | 0.0534(4) | ||
Voids around randomly oriented square prisms of aspect ratio 15 | 0.0535(4) | ||
Voids around randomly oriented square prisms of aspect ratio 10 | 0.0524(5) | ||
Voids around randomly oriented square prisms of aspect ratio 8 | 0.0523(6) | ||
Voids around randomly oriented square prisms of aspect ratio 7 | 0.0519(3) | ||
Voids around randomly oriented square prisms of aspect ratio 6 | 0.0519(5) | ||
Voids around randomly oriented square prisms of aspect ratio 5 | 0.0515(7) | ||
Voids around randomly oriented square prisms of aspect ratio 4 | 0.0505(7) | ||
Voids around randomly oriented square prisms of aspect ratio 3 | 0.0485(11) | ||
Voids around randomly oriented square prisms of aspect ratio 5/2 | 0.0483(8) | ||
Voids around randomly oriented square prisms of aspect ratio 2 | 0.0465(7) | ||
Voids around randomly oriented square prisms of aspect ratio 3/2 | 0.0461(14) | ||
Voids around hemispheres | 0.0455(6) | ||
Voids around aligned tetrahedra | 0.0605(6) | ||
Voids around randomly oriented tetrahedra | 0.0605(6) | ||
Voids around aligned cubes | 0.036(1), 0.0381(3) | ||
Voids around randomly oriented cubes | 0.0452(6), 0.0449(5) | ||
Voids around aligned octahedra | 0.0407(3) | ||
Voids around randomly oriented octahedra | 0.0398(5) | ||
Voids around aligned dodecahedra | 0.0356(3) | ||
Voids around randomly oriented dodecahedra | 0.0360(3) | ||
Voids around aligned icosahedra | 0.0346(3) | ||
Voids around randomly oriented icosahedra | 0.0336(7) | ||
Voids around spheres | 0.034(7),[135] 0.032(4),[136] 0.030(2),[137] 0.0301(3),[138] 0.0294,[139] 0.0300(3),[140] 0.0317(4),[141] 0.0308(5)[142] 0.0301(1), 0.0301(1)[143] | 3.506(8), 3.515(6),[144] 3.510(2)[145] |
Lattice | z | \overlinez | Site percolation threshold | Bond percolation threshold | |
---|---|---|---|---|---|
Contact network of packed spheres | 6 | 0.310(5),[146] 0.287(50),[147] 0.3116(3), | |||
Random-plane tessellation, dual | 6 | 0.290(7)[148] | |||
Icosahedral Penrose | 6 | 0.285[149] | 0.225 | ||
Penrose w/2 diagonals | 6.764 | 0.271 | 0.207 | ||
Penrose w/8 diagonals | 12.764 | 0.188 | 0.111 | ||
Voronoi network | 15.54 | 0.1453(20)[150] | 0.0822(50) |
Lattice | z | \overlinez | Site percolation threshold | Critical coverage fraction \phic | Bond percolation threshold |
---|---|---|---|---|---|
Drilling percolation, simple cubic lattice* | 6 | 6 | 0.6345(3),[151] 0.6339(5),[152] 0.633965(15)[153] | 0.25480 | |
Drill in z direction on cubic lattice, remove single sites | 6 | 6 | 0.592746 (columns), 0.4695(10) (sites) | 0.2784 | |
Random tube model, simple cubic lattice† | 0.231456(6)[154] | ||||
Pac-Man percolation, simple cubic lattice | 0.139(6)[155] | ||||
*
pc
\phic=p
3 | |
c |
\phic=pc
pc
† In tube percolation, the bond threshold represents the value of the parameter
\mu
-\muhi | |
1-e |
hi
d | System | Φc | ηc | |
---|---|---|---|---|
4 | Overlapping hyperspheres | 0.1223(4) | 0.1300(13), 0.1304(5) | |
4 | Aligned hypercubes | 0.1132(5), 0.1132348(17) | 0.1201(6) | |
4 | Voids around hyperspheres | 0.00211(2) | 6.161(10) 6.248(2), | |
5 | Overlapping hyperspheres | 0.0544(6), 0.05443(7) | ||
5 | Aligned hypercubes | 0.04900(7), 0.0481621(13) | 0.05024(7) | |
5 | Voids around hyperspheres | 1.26(6)x10−4 | 8.98(4), 9.170(8) | |
6 | Overlapping hyperspheres | 0.02391(31), 0.02339(5) | ||
6 | Aligned hypercubes | 0.02082(8), 0.0213479(10) | 0.02104(8) | |
6 | Voids around hyperspheres | 8.0(6)x10−6 | 11.74(8), 12.24(2), | |
7 | Overlapping hyperspheres | 0.01102(16), 0.01051(3) | ||
7 | Aligned hypercubes | 0.00999(5), 0.0097754(31) | 0.01004(5) | |
7 | Voids around hyperspheres | 15.46(5) | ||
8 | Overlapping hyperspheres | 0.00516(8), 0.004904(6) | ||
8 | Aligned hypercubes | 0.004498(5) | ||
8 | Voids around hyperspheres | 18.64(8) | ||
9 | Overlapping hyperspheres | 0.002353(4) | ||
9 | Aligned hypercubes | 0.002166(4) | ||
9 | Voids around hyperspheres | 22.1(4) | ||
10 | Overlapping hyperspheres | 0.001138(3) | ||
10 | Aligned hypercubes | 0.001058(4) | ||
11 | Overlapping hyperspheres | 0.0005530(3) | ||
11 | Aligned hypercubes | 0.0005160(3) |
ηc=(\pid/2/\Gamma[d/2+1])rdN/Ld.
In 4d,
ηc=(1/2)\pi2r4N/L4
In 5d,
ηc=(8/15)\pi2r5N/L5
In 6d,
ηc=(1/6)\pi3r6N/L6
\phic=1-
-ηc | |
e |
For void models,
\phic=
-ηc | |
e |
ηc
d | z | Site thresholds | Bond thresholds |
---|---|---|---|
4 | 8 | 0.198(1)[156] 0.197(6), 0.1968861(14),[157] 0.196889(3),[158] 0.196901(5),[159] 0.19680(23),[160] 0.1968904(65), 0.19688561(3) | 0.1600(1), 0.16005(15), 0.1601314(13), 0.160130(3), 0.1601310(10),[161] 0.1601312(2), 0.16013122(6) |
5 | 10 | 0.141(1),0.198(1) 0.141(3), 0.1407966(15), 0.1407966(26), 0.14079633(4) | 0.1181(1),[162] 0.118(1), 0.11819(4), 0.118172(1), 0.1181718(3) 0.11817145(3) |
6 | 12 | 0.106(1), 0.108(3), 0.109017(2), 0.1090117(30), 0.109016661(8) | 0.0943(1), 0.0942(1), 0.0942019(6), 0.09420165(2) |
7 | 14 | 0.05950(5), 0.088939(20),[163] 0.0889511(9), 0.0889511(90),[164] 0.088951121(1), | 0.0787(1), 0.078685(30), 0.0786752(3), 0.078675230(2) |
8 | 16 | 0.0752101(5), 0.075210128(1) | 0.06770(5), 0.06770839(7), 0.0677084181(3) |
9 | 18 | 0.0652095(3), 0.0652095348(6) | 0.05950(5),[165] 0.05949601(5), 0.0594960034(1) |
10 | 20 | 0.0575930(1), 0.0575929488(4) | 0.05309258(4), 0.0530925842(2) |
11 | 22 | 0.05158971(8), 0.0515896843(2) | 0.04794969(1), 0.04794968373(8) |
12 | 24 | 0.04673099(6), 0.0467309755(1) | 0.04372386(1), 0.04372385825(10) |
13 | 26 | 0.04271508(8), 0.04271507960(10)[166] | 0.04018762(1), 0.04018761703(6) |
For thresholds on high dimensional hypercubic lattices, we have the asymptotic series expansions [167] [168] [169]
site(d)=\sigma | |
p | |
c |
-1+
3 | |
2 |
\sigma-2+
15 | |
4 |
\sigma-3+
83 | |
4 |
\sigma-4+
6577 | |
48 |
\sigma-5+
119077 | |
96 |
\sigma-6+{lO}(\sigma-7)
bond(d)=\sigma | |
p | |
c |
-1+
5 | |
2 |
\sigma-3+
15 | |
2 |
\sigma-4+57\sigma-5+
4855 | |
12 |
\sigma-6+{lO}(\sigma-7)
where
\sigma=2d-1
d | lattice | z | Site thresholds | Bond thresholds |
---|---|---|---|---|
4 | diamond | 5 | 0.2978(2) | 0.2715(3) |
4 | kagome | 8 | 0.2715(3)[170] | 0.177(1) |
4 | bcc | 16 | 0.1037(3) | 0.074(1), 0.074212(1)[171] |
4 | fcc, D4, hypercubic 2NN | 24 | 0.0842(3), 0.08410(23), 0.0842001(11) | 0.049(1), 0.049517(1), 0.0495193(8) |
4 | hypercubic NN+2NN | 32 | 0.06190(23), 0.0617731(19)[172] | 0.035827(1), 0.0338047(27) |
4 | hypercubic 3NN | 32 | 0.04540(23) | |
4 | hypercubic NN+3NN | 40 | 0.04000(23) | 0.0271892(22) |
4 | hypercubic 2NN+3NN | 56 | 0.03310(23) | 0.0194075(15) |
4 | hypercubic NN+2NN+3NN | 64 | 0.03190(23), 0.0319407(13) | 0.0171036(11) |
4 | hypercubic NN+2NN+3NN+4NN | 88 | 0.0231538(12) | 0.0122088(8) |
4 | hypercubic NN+...+5NN | 136 | 0.0147918(12) | 0.0077389(9) |
4 | hypercubic NN+...+6NN | 232 | 0.0088400(10) | 0.0044656(11) |
4 | hypercubic NN+...+7NN | 296 | 0.0070006(6) | 0.0034812(7) |
4 | hypercubic NN+...+8NN | 320 | 0.0064681(9) | 0.0032143(8) |
4 | hypercubic NN+...+9NN | 424 | 0.0048301(9) | 0.0024117(7) |
5 | diamond | 6 | 0.2252(3) | 0.2084(4) |
5 | kagome | 10 | 0.2084(4) | 0.130(2) |
5 | bcc | 32 | 0.0446(4) | 0.033(1) |
5 | fcc, D5, hypercubic 2NN | 40 | 0.0431(3), 0.0435913(6) | 0.026(2), 0.0271813(2) |
5 | hypercubic NN+2NN | 50 | 0.0334(2)[173] | 0.0213(1) |
6 | diamond | 7 | 0.1799(5) | 0.1677(7) |
6 | kagome | 12 | 0.1677(7) | |
6 | fcc, D6 | 60 | 0.0252(5), 0.02602674(12) | 0.01741556(5) |
6 | bcc | 64 | 0.0199(5) | |
6 | E6 | 72 | 0.02194021(14) | 0.01443205(8) |
7 | fcc, D7 | 84 | 0.01716730(5) | 0.012217868(13) |
7 | E7 | 126 | 0.01162306(4) | 0.00808368(2) |
8 | fcc, D8 | 112 | 0.01215392(4) | 0.009081804(6) |
8 | E8 | 240 | 0.00576991(2) | 0.004202070(2) |
9 | fcc, D9 | 144 | 0.00905870(2) | 0.007028457(3) |
9 | Λ9 | 272 | 0.00480839(2) | 0.0037006865(11) |
10 | fcc, D10 | 180 | 0.007016353(9) | 0.005605579(6) |
11 | fcc, D11 | 220 | 0.005597592(4) | 0.004577155(3) |
12 | fcc, D12 | 264 | 0.004571339(4) | 0.003808960(2) |
13 | fcc, D13 | 312 | 0.003804565(3) | 0.0032197013(14) |
In a one-dimensional chain we establish bonds between distinct sites
i
j
p= | C |
|i-j|1+\sigma |
\sigma>0
Cc<1
\sigma<1
0.1 | 0.047685(8) | |
0.2 | 0.093211(16) | |
0.3 | 0.140546(17) | |
0.4 | 0.193471(15) | |
0.5 | 0.25482(5) | |
0.6 | 0.327098(6) | |
0.7 | 0.413752(14) | |
0.8 | 0.521001(14) | |
0.9 | 0.66408(7) |
In these lattices there may be two percolation thresholds: the lower threshold is the probability above which infinite clusters appear, and the upper is the probability above which there is a unique infinite cluster.
Lattice | z | \overlinez | Site percolation threshold | Bond percolation threshold | ||||
---|---|---|---|---|---|---|---|---|
Lower | Upper | Lower | Upper | |||||
hyperbolic | 7 | 7 | 0.26931171(7), 0.20 | 0.73068829(7), 0.73(2)[177] | 0.20, 0.1993505(5) | 0.37, 0.4694754(8) | ||
hyperbolic | 8 | 8 | 0.20878618(9) | 0.79121382(9) | 0.1601555(2) | 0.4863559(6) | ||
hyperbolic | 9 | 9 | 0.1715770(1) | 0.8284230(1) | 0.1355661(4) | 0.4932908(1) | ||
hyperbolic | 5 | 5 | 0.29890539(6) | 0.8266384(5) | 0.27,[178] 0.2689195(3)[179] | 0.52, 0.6487772(3) | ||
hyperbolic | 6 | 6 | 0.22330172(3) | 0.87290362(7) | 0.20714787(9) | 0.6610951(2) | ||
hyperbolic | 7 | 7 | 0.17979594(1) | 0.89897645(3) | 0.17004767(3) | 0.66473420(4) | ||
hyperbolic | 8 | 8 | 0.151035321(9) | 0.91607962(7) | 0.14467876(3) | 0.66597370(3) | ||
hyperbolic | 8 | 8 | 0.13045681(3) | 0.92820305(3) | 0.1260724(1) | 0.66641596(2) | ||
hyperbolic | 5 | 5 | 0.26186660(5) | 0.89883342(7) | 0.263(10), 0.25416087(3) | 0.749(10) 0.74583913(3) | ||
hyperbolic | 3 | 3 | 0.54710885(10) | 0.8550371(5), 0.86(2) | 0.53, 0.551(10), 0.5305246(8) | 0.72, 0.810(10), 0.8006495(5) | ||
Cayley tree | 3 | 3 | 1 | |||||
Enhanced binary tree (EBT) | 0.304(1), 0.306(10),[180] (− 3)/2 = 0.302776[181] | 0.48, 0.564(1),[182] 0.564(10), | ||||||
Enhanced binary tree dual | 0.436(1), 0.452(10) | 0.696(1), 0.699(10) | ||||||
Non-Planar Hanoi Network (HN-NP) | 0.319445[183] | 0.381996 | ||||||
Cayley tree with grandparents | 8 | 0.158656326[184] | - |
For bond percolation on, we have by duality
pc,\ell(P,Q)+pc,u(Q,P)=1
pc,\ell(3,Q)+pc,u(3,Q)=1
Cayley tree (Bethe lattice) with coordination number
z:pc=1/(z-1)
Lattice | z | width=40% | Site percolation threshold | width=40% | Bond percolation threshold |
---|---|---|---|---|---|
(1+1)-d honeycomb | 1.5 | 0.8399316(2), 0.839933(5),[185] =\sqrt{pc({site | 0.8228569(2), 0.82285680(6) | ||
(1+1)-d kagome | 2 | 0.7369317(2), 0.73693182(4) | 0.6589689(2), 0.65896910(8) | ||
(1+1)-d square, diagonal | 2 | 0.705489(4),[186] 0.705489(4),[187] 0.70548522(4),[188] 0.70548515(20),[189] 0.7054852(3),[190] | 0.644701(2),[191] 0.644701(1),[192] 0.644701(1), 0.6447006(10), 0.64470015(5),[193] 0.644700185(5), 0.6447001(2), 0.643(2) | ||
(1+1)-d triangular | 3 | 0.595646(3), 0.5956468(5), 0.5956470(3) | 0.478018(2), 0.478025(1), 0.4780250(4) 0.479(3) | ||
(2+1)-d simple cubic, diagonal planes | 3 | 0.43531(1), 0.43531411(10) | 0.382223(7), 0.38222462(6) 0.383(3) | ||
(2+1)-d square nn (= bcc) | 4 | 0.3445736(3),[194] 0.344575(15) 0.3445740(2) | 0.2873383(1),[195] 0.287338(3)[196] 0.28733838(4) 0.287(3) | ||
(2+1)-d fcc | 0.199(2)) | ||||
(3+1)-d hypercubic, diagonal | 4 | 0.3025(10),[197] 0.30339538(5) | 0.26835628(5), 0.2682(2) | ||
(3+1)-d cubic, nn | 6 | 0.2081040(4) | 0.1774970(5) | ||
(3+1)-d bcc | 8 | 0.160950(30), 0.16096128(3) | 0.13237417(2) | ||
(4+1)-d hypercubic, diagonal | 5 | 0.23104686(3) | 0.20791816(2), 0.2085(2)[198] | ||
(4+1)-d hypercubic, nn | 8 | 0.1461593(2), 0.1461582(3)[199] | 0.1288557(5) | ||
(4+1)-d bcc | 16 | 0.075582(17),[200] 0.0755850(3), 0.07558515(1) | 0.063763395(5) | ||
(5+1)-d hypercubic, diagonal | 6 | 0.18651358(2) | 0.170615155(5), 0.1714(1) | ||
(5+1)-d hypercubic, nn | 10 | 0.1123373(2) | 0.1016796(5) | ||
(5+1)-d hypercubic bcc | 32 | 0.035967(23), 0.035972540(3) | 0.0314566318(5) | ||
(6+1)-d hypercubic, diagonal | 7 | 0.15654718(1) | 0.145089946(3), 0.1458 | ||
(6+1)-d hypercubic, nn | 12 | 0.0913087(2) | 0.0841997(14) | ||
(6+1)-d hypercubic bcc | 64 | 0.017333051(2) | 0.01565938296(10) | ||
(7+1)-d hypercubic, diagonal | 8 | 0.135004176(10) | 0.126387509(3), 0.1270(1) | ||
(7+1)-d hypercubic,nn | 14 | 0.07699336(7) | 0.07195(5) | ||
(7+1)-d bcc | 128 | 0.008 432 989(2) | 0.007 818 371 82(6) |
Lattice | z | width=40% | Site percolation threshold | width=40% | Bond percolation threshold |
---|---|---|---|---|---|
(1+1)-d square with 3 NN | 3 | 0.4395(3),[201] |
p_b = bond threshold
p_s = site threshold
Site-bond percolation is equivalent to having different probabilities of connections:
P_0 = probability that no sites are connected
P_2 = probability that exactly one descendant is connected to the upper vertex (two connected together)
P_3 = probability that both descendants are connected to the original vertex (all three connected together)
Formulas:
P_0 = (1-p_s) + p_s(1-p_b)^2
P_2 = p_s p_b (1-p_b)
P_3 = p_s p_b^2
P_0 + 2P_2 + P_3 = 1
Lattice | z | width=20% | p_s | width=20% | p_b | width=20% | P_0 | width=20% | P_2 | width=20% | P_3 |
---|---|---|---|---|---|---|---|---|---|---|---|
(1+1)-d square | 3 | 0.644701 | 1 | 0.126237 | 0.229062 | 0.415639 | |||||
0.7 | 0.93585 | 0.148376 | 0.196529 | 0.458567 | |||||||
0.75 | 0.88565 | 0.169703 | 0.166059 | 0.498178 | |||||||
0.8 | 0.84135 | 0.192304 | 0.134616 | 0.538464 | |||||||
0.85 | 0.80190 | 0.216143 | 0.102242 | 0.579373 | |||||||
0.9 | 0.76645 | 0.241215 | 0.068981 | 0.620825 | |||||||
0.95 | 0.73450 | 0.267336 | 0.034889 | 0.662886 | |||||||
1 | 0.705489 | 0.294511 | 0 | 0.705489 | |||||||
Inhomogeneous triangular lattice bond percolation
1-p1-p2-p3+p1p2p3=0
Inhomogeneous honeycomb lattice bond percolation = kagome lattice site percolation
1-p1p2-p1p3-p2p3+p1p2p3=0
Inhomogeneous (3,12^2) lattice, site percolation[202]
1-3(s1s
2 | |
2) |
+(s1s
3 | |
2) |
=0,
s1s2=1-2\sin(\pi/18)
Inhomogeneous union-jack lattice, site percolation with probabilities
p1,p2,p3,p4
p3=1-p1; p4=1-p2
Inhomogeneous martini lattice, bond percolation
1-(p1p2r3+p2p3r1+p1p3r2) -(p1p2r1r2+p1p3r1r3+p2p3r2r3) +p1p2p3(r1r2+r1r3+r2r3) +r1r2r3(p1p2+p1p3+p2p3) -2p1p2p3r1r2r3=0
Inhomogeneous martini lattice, site percolation. r = site in the star
1-r(p1p2+p1p3+p2p3-p1p2p3)=0
Inhomogeneous martini-A (3–7) lattice, bond percolation. Left side (top of "A" to bottom):
r2, p1
r1, p2
r3
1-p1r2-p2r1-p1p2r3-p1r1r3-p2r2r3+p1p2r1r3+p1p2r2r3 +p1r1r2r3+p2r1r2r3-p1p2r1r2r3=0
Inhomogeneous martini-B (3–5) lattice, bond percolation
Inhomogeneous martini lattice with outside enclosing triangle of bonds, probabilities
y,x,z
1-3z+z3-(1-z2)[3x2y(1+y-y2)(1+z)+x3y2(3-2y)(1+2z)]=0
Inhomogeneous checkerboard lattice, bond percolation[205]
1-(p1p2+p1p3+p1p4+p2p3+p2p4+p3p4)+p1p2p3+p1p2p4+p1p3p4+p2p3p4=0
Inhomogeneous bow-tie lattice, bond percolation[205]
1-(p1p2+p1p3+p1p4+p2p3+p2p4+p3p4)+p1p2p3+p1p2p4+p1p3p4+p2p3p4 -u(1-p1p2-p3p4+p1p2p3p4)=0
where
p1,p2,p3,p4
u
p4,p1
p2,p3