Percolation threshold explained

The percolation threshold is a mathematical concept in percolation theory that describes the formation of long-range connectivity in random systems. Below the threshold a giant connected component does not exist; while above it, there exists a giant component of the order of system size. In engineering and coffee making, percolation represents the flow of fluids through porous media, but in the mathematics and physics worlds it generally refers to simplified lattice models of random systems or networks (graphs), and the nature of the connectivity in them. The percolation threshold is the critical value of the occupation probability p, or more generally a critical surface for a group of parameters p1, p2, ..., such that infinite connectivity (percolation) first occurs.[1]

Percolation models

The most common percolation model is to take a regular lattice, like a square lattice, and make it into a random network by randomly "occupying" sites (vertices) or bonds (edges) with a statistically independent probability p. At a critical threshold pc, large clusters and long-range connectivity first appear, and this is called the percolation threshold. Depending on the method for obtaining the random network, one distinguishes between the site percolation threshold and the bond percolation threshold. More general systems have several probabilities p1, p2, etc., and the transition is characterized by a critical surface or manifold. One can also consider continuum systems, such as overlapping disks and spheres placed randomly, or the negative space (Swiss-cheese models).

To understand the threshold, you can consider a quantity such as the probability that there is a continuous path from one boundary to another along occupied sites or bonds—that is, within a single cluster. For example, one can consider a square system, and ask for the probability P that there is a path from the top boundary to the bottom boundary. As a function of the occupation probability p, one finds a sigmoidal plot that goes from P=0 at p=0 to P=1 at p=1. The larger the square is compared to the lattice spacing, the sharper the transition will be. When the system size goes to infinity, P(p) will be a step function at the threshold value pc. For finite large systems, P(pc) is a constant whose value depends upon the shape of the system; for the square system discussed above, P(pc)= exactly for any lattice by a simple symmetry argument.

There are other signatures of the critical threshold. For example, the size distribution (number of clusters of size s) drops off as a power-law for large s at the threshold, ns(pc) ~ s−τ, where τ is a dimension-dependent percolation critical exponents. For an infinite system, the critical threshold corresponds to the first point (as p increases) where the size of the clusters become infinite.

In the systems described so far, it has been assumed that the occupation of a site or bond is completely random—this is the so-called Bernoulli percolation. For a continuum system, random occupancy corresponds to the points being placed by a Poisson process. Further variations involve correlated percolation, such as percolation clusters related to Ising and Potts models of ferromagnets, in which the bonds are put down by the Fortuin–Kasteleyn method.[2] In bootstrap or k-sat percolation, sites and/or bonds are first occupied and then successively culled from a system if a site does not have at least k neighbors. Another important model of percolation, in a different universality class altogether, is directed percolation, where connectivity along a bond depends upon the direction of the flow.

Over the last several decades, a tremendous amount of work has gone into finding exact and approximate values of the percolation thresholds for a variety of these systems. Exact thresholds are only known for certain two-dimensional lattices that can be broken up into a self-dual array, such that under a triangle-triangle transformation, the system remains the same. Studies using numerical methods have led to numerous improvements in algorithms and several theoretical discoveries.

Simple duality in two dimensions implies that all fully triangulated lattices (e.g., the triangular, union jack, cross dual, martini dual and asanoha or 3-12 dual, and the Delaunay triangulation) all have site thresholds of, and self-dual lattices (square, martini-B) have bond thresholds of .

The notation such as (4,82) comes from Grünbaum and Shephard,[3] and indicates that around a given vertex, going in the clockwise direction, one encounters first a square and then two octagons. Besides the eleven Archimedean lattices composed of regular polygons with every site equivalent, many other more complicated lattices with sites of different classes have been studied.

Error bars in the last digit or digits are shown by numbers in parentheses. Thus, 0.729724(3) signifies 0.729724 ± 0.000003, and 0.74042195(80) signifies 0.74042195 ± 0.00000080. The error bars variously represent one or two standard deviations in net error (including statistical and expected systematic error), or an empirical confidence interval, depending upon the source.

Percolation on networks

For a random tree-like network (i.e., a connected network with no cycle) without degree-degree correlation, it can be shown that such network can have a giant component, and the percolation threshold (transmission probability) is given by

pc=

1
g1'(1)

=

\langlek\rangle
\langlek2\rangle-\langlek\rangle
.

Where

g1(z)

is the generating function corresponding to the excess degree distribution,

{\langlek\rangle}

is the average degree of the network and

{\langlek2\rangle}

is the second moment of the degree distribution. So, for example, for an ER network, since the degree distribution is a Poisson distribution, the threshold is at

pc={\langlek\rangle}-1

.

In networks with low clustering,

0<C\ll1

, the critical point gets scaled by

(1-C)-1

such that:[4]

pc=

1
1-C
1
g1'(1)

.

This indicates that for a given degree distribution, the clustering leads to a larger percolation threshold, mainly because for a fixed number of links, the clustering structure reinforces the core of the network with the price of diluting the global connections. For networks with high clustering, strong clustering could induce the core–periphery structure, in which the core and periphery might percolate at different critical points, and the above approximate treatment is not applicable.[5]

Percolation in 2D

Thresholds on Archimedean lattices

Latticez

\overlinez

Site percolation thresholdBond percolation threshold
3-12 or super-kagome, (3, 122)33 0.807900764... = (1 − 2 sin (/18)) 0.74042195(80), 0.74042077(2), 0.740420800(2), 0.7404207988509(8), 0.740420798850811610(2),
cross, truncated trihexagonal (4, 6, 12) 33 0.746, 0.750, 0.747806(4), 0.7478008(2) 0.6937314(1), 0.69373383(72), 0.693733124922(2)
square octagon, bathroom tile, 4-8, truncated square(4, 82)33-0.729, 0.729724(3), 0.7297232(5) 0.6768, 0.67680232(63), 0.6768031269(6), 0.6768031243900113(3),
honeycomb (63)330.6962(6), 0.697040230(5), 0.6970402(1), 0.6970413(10), 0.697043(3),0.652703645... = 1-2 sin (π/18), 1+ p3-3p2=0
kagome (3, 6, 3, 6)440.652703645... = 1 − 2 sin(/18) 0.5244053(3), 0.52440516(10), 0.52440499(2), 0.524404978(5), 0.52440572..., 0.52440500(1), 0.524404999173(3), 0.524404999167439(4) 0.52440499916744820(1)
ruby, rhombitrihexagonal (3, 4, 6, 4)440.620, 0.621819(3), 0.62181207(7) 0.52483258(53), 0.5248311(1), 0.524831461573(1)
square (44)440.59274(10), 0.59274605079210(2), 0.59274601(2), 0.59274605095(15), 0.59274621(13), 0.592746050786(3),[6] 0.59274621(33), 0.59274598(4), 0.59274605(3), 0.593(1), 0.591(1), 0.569(13), 0.59274(5)
snub hexagonal, maple leaf (34,6) 550.579 0.579498(3)0.43430621(50), 0.43432764(3), 0.4343283172240(6),
snub square, puzzle (32, 4, 3, 4)550.550, 0.550806(3)0.41413743(46), 0.4141378476(7), 0.4141378565917(1),
frieze, elongated triangular(33, 42)550.549, 0.550213(3), 0.5502(8)0.4196(6), 0.41964191(43), 0.41964044(1), 0.41964035886369(2)
triangular (36) 660.347296355... = 2 sin (/18), 1 + p3 − 3p = 0

Note: sometimes "hexagonal" is used in place of honeycomb, although in some contexts a triangular lattice is also called a hexagonal lattice. z = bulk coordination number.

2D lattices with extended and complex neighborhoods

In this section, sq-1,2,3 corresponds to square (NN+2NN+3NN), etc. Equivalent to square-2N+3N+4N, sq(1,2,3). tri = triangular, hc = honeycomb.

Latticez Site percolation thresholdBond percolation threshold
sq-1, sq-2, sq-3, sq-540.5927... (square site)
sq-1,2, sq-2,3, sq-3,580.407... (square matching)0.25036834(6), 0.2503685, 0.25036840(4)
sq-1,380.3370.2214995
sq-2,5: 2NN+5NN80.337
hc-1,2,3: honeycomb-NN+2NN+3NN120.300, 0.300, 0.302960... = 1-pc(site, hc)
tri-1,2: triangular-NN+2NN120.295, 0.289, 0.290258(19)
tri-2,3: triangular-2NN+3NN120.232020(36), 0.232020(20)
sq-4: square-4NN80.270...
sq-1,5: square-NN+5NN (r ≤ 2)80.277
sq-1,2,3: square-NN+2NN+3NN120.292, 0.290(5) 0.289, 0.288,0.1522203
sq-2,3,5: square-2NN+3NN+5NN120.288
sq-1,4: square-NN+4NN120.236
sq-2,4: square-2NN+4NN120.225
tri-4: triangular-4NN120.192450(36), 0.1924428(50)
hc-2,4: honeycomb-2NN+4NN120.2374
tri-1,3: triangular-NN+3NN120.264539(21)
tri-1,2,3: triangular-NN+2NN+3NN180.225, 0.215, 0.215459(36) 0.2154657(17)
sq-3,4: 3NN+4NN120.221
sq-1,2,5: NN+2NN+5NN120.2400.13805374
sq-1,3,5: NN+3NN+5NN120.233
sq-4,5: 4NN+5NN120.199
sq-1,2,4: NN+2NN+4NN160.219
sq-1,3,4: NN+3NN+4NN160.208
sq-2,3,4: 2NN+3NN+4NN160.202
sq-1,4,5: NN+4NN+5NN160.187
sq-2,4,5: 2NN+4NN+5NN160.182
sq-3,4,5: 3NN+4NN+5NN160.179
sq-1,2,3,5: NN+2NN+3NN+5NN160.2080.1032177
tri-4,5: 4NN+5NN180.140250(36),
sq-1,2,3,4: NN+2NN+3NN+4NN (

r\le\sqrt{5}

)
200.19671(9), 0.196, 0.196724(10)0.0841509
sq-1,2,4,5: NN+2NN+4NN+5NN200.177
sq-1,3,4,5: NN+3NN+4NN+5NN200.172
sq-2,3,4,5: 2NN+3NN+4NN+5NN 200.167
sq-1,2,3,5,6: NN+2NN+3NN+5NN+6NN200.0783110
sq-1,2,3,4,5: NN+2NN+3NN+4NN+5NN (

r\le\sqrt{8}

)
240.164
tri-1,4,5: NN+4NN+5NN240.131660(36)
sq-1,...,6: NN+...+6NN (r≤3)280.1420.0558493
tri-2,3,4,5: 2NN+3NN+4NN+5NN300.117460(36) 0.135823(27)
tri-1,2,3,4,5: NN+2NN+3NN+4NN+5NN
360.115, 0.115740(36), 0.1157399(58)
sq-1,...,7: NN+...+7NN (

r\le\sqrt{10}

)
360.1130.04169608
square: square distance ≤ 440 0.105(5)
sq-(1,...,8: NN+..+8NN (

r\le\sqrt{13}

)
440.095, 0.095765(5), 0.09580(2)
sq-1,...,9: NN+..+9NN (r≤4)480.0860.02974268
sq-1,...,11: NN+...+11NN (

r\le\sqrt{18}

)
600.02301190(3)
sq-1,...,23 (r ≤ 7)148 0.008342595
sq-1,...,32: NN+...+32NN (

r\le\sqrt{72}

)
2240.0053050415(33)
sq-1,...,86: NN+...+86NN (r≤15)7080.001557644(4)
sq-1,...,141: NN+...+141NN (

r\le\sqrt{389}

)
12240.000880188(90)
sq-1,...,185: NN+...+185NN (r≤23)1652 0.000645458(4)
sq-1,...,317: NN+...+317NN (r≤31)30000.000349601(3)
sq-1,...,413: NN+...+413NN (

r\le\sqrt{1280}

)
40160.0002594722(11)
square: square distance ≤ 6840.049(5)
square: square distance ≤ 81440.028(5)
square: square distance ≤ 102200.019(5)
2x2 lattice squares* (also above)20φc = 0.58365(2), pc = 0.196724(10), 0.19671(9),
3x3 lattice squares* (also above)44φc = 0.59586(2), pc = 0.095765(5), 0.09580(2)
4x4 lattice squares*76φc = 0.60648(1), pc = 0.0566227(15), 0.05665(3),
5x5 lattice squares*116φc = 0.61467(2), pc = 0.037428(2), 0.03745(2),
6x6 lattice squares*220pc = 0.02663(1),
10x10 lattice squares*436φc = 0.36391(2), pc = 0.0100576(5)

Here NN = nearest neighbor, 2NN = second nearest neighbor (or next nearest neighbor), 3NN = third nearest neighbor (or next-next nearest neighbor), etc. These are also called 2N, 3N, 4N respectively in some papers.

pc

(site) given here is the net fraction of sites occupied

\phic

similar to the

\phic

in continuum percolation. The case of a 2×2 square is equivalent to percolation of a square lattice NN+2NN+3NN+4NN or sq-1,2,3,4 with threshold
1/4
1-(1-\phi
c)

=0.196724(10)\ldots

with

\phic=0.58365(2)

. The 3×3 square corresponds to sq-1,2,3,4,5,6,7,8 with z=44 and

pc=1-(1-\phi

1/9
c)

=0.095765(5)\ldots

. The value of z for a k x k square is (2k+1)2-5. For larger overlapping squares, see.

2D distorted lattices

Here, one distorts a regular lattice of unit spacing by moving vertices uniformly within the box

(x-\alpha,x+\alpha),(y-\alpha,y+\alpha)

, and considers percolation when sites are within Euclidean distance

d

of each other.
Lattice

\overlinez

\alpha

d

Site percolation thresholdBond percolation threshold
square 0.21.10.8025(2)
0.21.20.6667(5)
0.11.10.6619(1)

Overlapping shapes on 2D lattices

Site threshold is number of overlapping objects per lattice site. k is the length (net area). Overlapping squares are shown in the complex neighborhood section. Here z is the coordination number to k-mers of either orientation, with

z=k2+10k-2

for

1 x k

sticks.
SystemkzSite coverage φcSite percolation threshold pc
1 x 2 dimer, square lattice2220.546910.5483(2)[7] 0.17956(3)0.18019(9)
1 x 2 aligned dimer, square lattice2140.5715(18)0.3454(13)
1 x 3 trimer, square lattice3370.498980.50004(64)0.10880(2)0.1093(2)
1 x 4 stick, square lattice4540.457610.07362(2)
1 x 5 stick, square lattice5730.422410.05341(1)
1 x 6 stick, square lattice6940.392190.04063(2)

The coverage is calculated from

pc

by

\phic=

2k
1-(1-p
c)

for

1 x k

sticks, because there are

2k

sites where a stick will cause an overlap with a given site.

For aligned

1 x k

sticks:

\phic=

k
1-(1-p
c)

Approximate formulas for thresholds of Archimedean lattices

Latticez Site percolation thresholdBond percolation threshold
(3, 122)3
(4, 6, 12)3
(4, 82)30.676835..., 4p3 + 3p4 − 6 p5 − 2 p6 = 1
honeycomb (63)3
kagome (3, 6, 3, 6)40.524430..., 3p2 + 6p3 − 12 p4+ 6 p5p6 = 1
(3, 4, 6, 4)4
square (44)4 (exact)
(34,6)50.434371..., 12p3 + 36p4 − 21p5 − 327 p6 + 69p7 + 2532p8 − 6533 p9 + 8256 p10 − 6255p11 + 2951p12 − 837 p13 + 126 p14 − 7p15 = 1
snub square, puzzle (32, 4, 3, 4)5
(33, 42)5
triangular (36) 6 (exact)

AB percolation and colored percolation in 2D

In AB percolation, a

psite

is the proportion of A sites among B sites, and bonds are drawn between sites of opposite species. It is also called antipercolation.

In colored percolation, occupied sites are assigned one of

n

colors with equal probability, and connection is made along bonds between neighbors of different colors.
Latticez

\overlinez

Site percolation threshold
triangular AB660.2145, 0.21524(34),[8] 0.21564(3)[9]
AB on square-covering lattice66

1-\sqrt{1-pc(site,sq)}=0.361835

[10]
square three-color440.80745(5)[11]
square four-color440.73415(4)
square five-color440.69864(7)
square six-color440.67751(5)
triangular two-color660.72890(4)
triangular three-color660.63005(4)
triangular four-color660.59092(3)
triangular five-color660.56991(5)
triangular six-color660.55679(5)

Site-bond percolation in 2D

Site bond percolation. Here

ps

is the site occupation probability and

pb

is the bond occupation probability, and connectivity is made only if both the sites and bonds along a path are occupied. The criticality condition becomes a curve

f(ps,pb)

= 0, and some specific critical pairs

(ps,pb)

are listed below.

Square lattice:

Latticez

\overlinez

Site percolation thresholdBond percolation threshold
square440.615185(15)0.95
0.667280(15)0.85
0.732100(15)0.75
0.750.726195(15)
0.815560(15)0.65
0.850.615810(30)
0.950.533620(15)

Honeycomb (hexagonal) lattice:

Latticez

\overlinez

Site percolation thresholdBond percolation threshold
honeycomb330.7275(5)0.95
0. 0.7610(5)0.90
0.7986(5)0.85
0.800.8481(5)
0.8401(5)0.80
0.85 0.7890(5)
0.900.7377(5)
0.950.6926(5)

Kagome lattice:

Latticez

\overlinez

Site percolation thresholdBond percolation threshold
kagome440.6711(4), 0.67097(3)0.95
0.6914(5), 0.69210(2)0.90
0.7162(5), 0.71626(3)0.85
0.7428(5), 0.74339(3)0.80
0.750.7894(9)
0.7757(8), 0.77556(3)0.75
0.800.7152(7)
0.81206(3)0.70
0.85 0.6556(6)
0.85519(3)0.65
0.900.6046(5)
0.90546(3)0.60
0.950.5615(4)
0.96604(4)0.55
0.9854(3)0.53

* For values on different lattices, see "An investigation of site-bond percolation on many lattices".

Approximate formula for site-bond percolation on a honeycomb lattice

Archimedean duals (Laves lattices)

Laves lattices are the duals to the Archimedean lattices. Drawings from. See also Uniform tilings.

Latticez

\overlinez

Site percolation thresholdBond percolation threshold
Cairo pentagonalD(32,4,3,4)=(53)+(54)3,43 0.6501834(2), 0.650184(5)0.585863... = 1 − pcbond(32,4,3,4)
Pentagonal D(33,42)=(54)+(53)3,43 0.6470471(2), 0.647084(5), 0.6471(6)0.580358... = 1 − pcbond(33,42), 0.5800(6)
D(34,6)=(46)+(43)3,63 0.6394470.565694... = 1 − pcbond(34,6)
dice, rhombille tiling D(3,6,3,6) = (46) + (43)3,640.5851(4), 0.585040(5)0.475595... = 1 − pcbond(3,6,3,6)
ruby dualD(3,4,6,4) = (46) + (43) + (44)3,4,640.582410(5)0.475167... = 1 − pcbond(3,4,6,4)
union jack, tetrakis square tiling D(4,82) = (34) + (38)4,860.323197... = 1 − pcbond(4,82)
bisected hexagon, cross dualD(4,6,12)= (312)+(36)+(34)4,6,12 60.306266... = 1 − pcbond(4,6,12)
asanoha (hemp leaf)D(3, 122)=(33)+(312)3,1260.259579... = 1 − pcbond(3, 122)

2-uniform lattices

Top 3 lattices: #13 #12 #36
Bottom 3 lattices: #34 #37 #11

[3]
Top 2 lattices: #35 #30
Bottom 2 lattices: #41 #42
[3]
Top 4 lattices: #22 #23 #21 #20
Bottom 3 lattices: #16 #17 #15[3]
Top 2 lattices: #31 #32
Bottom lattice: #33[3]
Latticez

\overlinez

Site percolation thresholdBond percolation threshold
41(3,4,3,12) + (3, 122)4,33.50.7680(2)0.67493252(36)
42(3,4,6,4) + (4,6,12)4,330.7157(2)0.64536587(40)
36(36) + (32,4,12)6,44 0.6808(2)0.55778329(40)
15(32,62) + (3,6,3,6)4,440.6499(2)0.53632487(40)
34(36) + (32,62)6,44 0.6329(2)0.51707873(70)
16(3,42,6) + (3,6,3,6)4,440.6286(2)0.51891529(35)
17(3,42,6) + (3,6,3,6)*4,440.6279(2)0.51769462(35)
35(3,42,6) + (3,4,6,4)4,440.6221(2)0.51973831(40)
11(34,6) + (32,62)5,44.50.6171(2)0.48921280(37)
37(33,42) + (3,4,6,4)5,44.50.5885(2)0.47229486(38)
30(32,4,3,4) + (3,4,6,4)5,44.50.5883(2)0.46573078(72)
23(33,42) + (44)5,44.50.5720(2)0.45844622(40)
22(33,42) + (44)5,44 0.5648(2)0.44528611(40)
12(36) + (34,6)6,55 0.5607(2)0.41109890(37)
33(33,42) + (32,4,3,4)5,550.5505(2)0.41628021(35)
32(33,42) + (32,4,3,4)5,550.5504(2)0.41549285(36)
31(36) + (32,4,3,4)6,55 0.5440(2)0.40379585(40)
13(36) + (34,6)6,55.50.5407(2)0.38914898(35)
21(36) + (33,42)6,55 0.5342(2)0.39491996(40)
20(36) + (33,42)6,55.50.5258(2)0.38285085(38)

Inhomogeneous 2-uniform lattice

This figure shows something similar to the 2-uniform lattice #37, except the polygons are not all regular—there is a rectangle in the place of the two squares—and the size of the polygons is changed. This lattice is in the isoradial representation in which each polygon is inscribed in a circle of unit radius. The two squares in the 2-uniform lattice must now be represented as a single rectangle in order to satisfy the isoradial condition. The lattice is shown by black edges, and the dual lattice by red dashed lines. The green circles show the isoradial constraint on both the original and dual lattices. The yellow polygons highlight the three types of polygons on the lattice, and the pink polygons highlight the two types of polygons on the dual lattice. The lattice has vertex types (33,42) + (3,4,6,4), while the dual lattice has vertex types (46)+(42,52)+(53)+(52,4). The critical point is where the longer bonds (on both the lattice and dual lattice) have occupation probability p = 2 sin (π/18) = 0.347296... which is the bond percolation threshold on a triangular lattice, and the shorter bonds have occupation probability 1 − 2 sin(π/18) = 0.652703..., which is the bond percolation on a hexagonal lattice. These results follow from the isoradial condition but also follow from applying the star-triangle transformation to certain stars on the honeycomb lattice. Finally, it can be generalized to having three different probabilities in the three different directions, p1, p2 and p3 for the long bonds, and,, and for the short bonds, where p1, p2 and p3 satisfy the critical surface for the inhomogeneous triangular lattice.

Thresholds on 2D bow-tie and martini lattices

To the left, center, and right are: the martini lattice, the martini-A lattice, the martini-B lattice. Below: the martini covering/medial lattice, same as the 2×2, 1×1 subnet for kagome-type lattices (removed).

Some other examples of generalized bow-tie lattices (a-d) and the duals of the lattices (e-h):

Latticez

\overlinez

Site percolation thresholdBond percolation threshold
martini (3,92)+(93)330.764826..., 1 + p4 − 3p3 = 00.707107... = 1/
bow-tie (c)3,43 0.672929..., 1 − 2p3 − 2p4 − 2p5 − 7p6 + 18p7 + 11p8 − 35p9 + 21p10 − 4p11 = 0
bow-tie (d)3,43 0.625457..., 1 − 2p2 − 3p3 + 4p4p5 = 0
martini-A (3,72)+(3,73)3,43 1/0.625457..., 1 − 2p2 − 3p3 + 4p4p5 = 0
bow-tie dual (e)3,43 0.595482..., 1-pcbond (bow-tie (a))
bow-tie (b)3,4,63 0.533213..., 1 − p − 2p3 -4p4-4p5+156+ 13p7-36p8+19p9+ p10 + p11=0
martini covering/medial (33,9) + (3,9,3,9)440.707107... = 1/0.57086651(33)
martini-B (3,5,3,52) + (3,52)3, 540.618034... = 2/(1 +), 1- p2p = 0
bow-tie dual (f)3,4,84 0.466787..., 1 − pcbond (bow-tie (b))
bow-tie (a) (32,4,32,4) + (3,4,3)4,650.5472(2), 0.5479148(7)0.404518..., 1 − p − 6p2 + 6p3p5 = 0
bow-tie dual (h)3,6,850.374543..., 1 − pcbond(bow-tie (d))
bow-tie dual (g)3,6,105 0.547... = pcsite(bow-tie(a)) 0.327071..., 1 − pcbond(bow-tie (c))
martini dual (33) + (39)3,960.292893... = 1 − 1/

Thresholds on 2D covering, medial, and matching lattices

Latticez

\overlinez

Site percolation thresholdBond percolation threshold
(4, 6, 12) covering/medial44pcbond(4, 6, 12) = 0.693731...0.5593140(2), 0.559315(1)
(4, 82) covering/medial, square kagome44pcbond(4,82) = 0.676803...0.544798017(4), 0.54479793(34)
(34, 6) medial440.5247495(5)
(3,4,6,4) medial440.51276
(32, 4, 3, 4) medial440.512682929(8)
(33, 42) medial440.5125245984(9)
square covering (non-planar)660.3371(1)
square matching lattice (non-planar)881 − pcsite(square) = 0.407253...0.25036834(6)

Thresholds on 2D chimera non-planar lattices

Latticez

\overlinez

Site percolation thresholdBond percolation threshold
K(2,2)440.51253(14)0.44778(15)
K(3,3)660.43760(15)0.35502(15)
K(4,4)880.38675(7)0.29427(12)
K(5,5)10100.35115(13)0.25159(13) -K(6,6)12120.32232(13)0.21942(11)
K(7,7)14140.30052(14)0.19475(9)
K(8,8)16160.28103(11)0.17496(10)

Thresholds on subnet lattices

The 2 x 2, 3 x 3, and 4 x 4 subnet kagome lattices. The 2 × 2 subnet is also known as the "triangular kagome" lattice.[12]

Latticez

\overlinez

Site percolation thresholdBond percolation threshold
checkerboard – 2 × 2 subnet4,30.596303(1)[13]
checkerboard – 4 × 4 subnet4,30.633685(9)
checkerboard – 8 × 8 subnet4,30.642318(5)
checkerboard – 16 × 16 subnet4,30.64237(1)
checkerboard – 32 × 32 subnet4,30.64219(2)
checkerboard –

infty

subnet
4,30.642216(10)
kagome – 2 × 2 subnet = (3, 122) covering/medial4pcbond (3, 122) = 0.74042077...0.600861966960(2), 0.6008624(10), 0.60086193(3)
kagome – 3 × 3 subnet40.6193296(10), 0.61933176(5), 0.61933044(32)
kagome – 4 × 4 subnet40.625365(3), 0.62536424(7)
kagome –

infty

subnet
40.628961(2)
kagome – (1 × 1):(2 × 2) subnet = martini covering/medial4pcbond(martini) = 1/ = 0.707107... 0.57086648(36)
kagome – (1 × 1):(3 × 3) subnet4,30.728355596425196...0.58609776(37)
kagome – (1 × 1):(4 × 4) subnet0.738348473943256...
kagome – (1 × 1):(5 × 5) subnet0.743548682503071...
kagome – (1 × 1):(6 × 6) subnet0.746418147634282...
kagome – (2 × 2):(3 × 3) subnet0.61091770(30)
triangular – 2 × 2 subnet6,40.471628788
triangular – 3 × 3 subnet6,40.509077793
triangular – 4 × 4 subnet6,40.524364822
triangular – 5 × 5 subnet6,40.5315976(10)
triangular –

infty

subnet
6,40.53993(1)

Thresholds of random sequentially adsorbed objects

(For more results and comparison to the jamming density, see Random sequential adsorption)

systemzSite threshold
dimers on a honeycomb lattice30.69, 0.6653 [14]
dimers on a triangular lattice60.4872(8),[15] 0.4873,
aligned linear dimers on a triangular lattice 6 0.5157(2) [16]
aligned linear 4-mers on a triangular lattice60.5220(2)
aligned linear 8-mers on a triangular lattice60.5281(5)
aligned linear 12-mers on a triangular lattice60.5298(8)
linear 16-mers on a triangular lattice6aligned 0.5328(7)
linear 32-mers on a triangular lattice6aligned 0.5407(6)
linear 64-mers on a triangular lattice6aligned 0.5455(4)
aligned linear 80-mers on a triangular lattice60.5500(6)
aligned linear k

\longrightarrowinfty

on a triangular lattice
60.582(9)
dimers and 5% impurities, triangular lattice60.4832(7)[17]
parallel dimers on a square lattice40.5863
dimers on a square lattice40.5617,[18] 0.5618(1),[19] 0.562,[20] 0.5713
linear 3-mers on a square lattice40.528
3-site 120° angle, 5% impurities, triangular lattice60.4574(9)
3-site triangles, 5% impurities, triangular lattice60.5222(9)
linear trimers and 5% impurities, triangular lattice60.4603(8)
linear 4-mers on a square lattice40.504
linear 5-mers on a square lattice40.490
linear 6-mers on a square lattice40.479
linear 8-mers on a square lattice40.474, 0.4697(1)
linear 10-mers on a square lattice40.469
linear 16-mers on a square lattice40.4639(1)
linear 32-mers on a square lattice40.4747(2)
The threshold gives the fraction of sites occupied by the objects when site percolation first takes place (not at full jamming). For longer k-mers see Ref.[21]

Thresholds of full dimer coverings of two dimensional lattices

Here, we are dealing with networks that are obtained by covering a lattice with dimers, and then consider bond percolation on the remaining bonds. In discrete mathematics, this problem is known as the 'perfect matching' or the 'dimer covering' problem.

systemzBond threshold
Parallel covering, square lattice60.381966...[22]
Shifted covering, square lattice60.347296...
Staggered covering, square lattice60.376825(2)
Random covering, square lattice60.367713(2)
Parallel covering, triangular lattice100.237418...
Staggered covering, triangular lattice100.237497(2)
Random covering, triangular lattice100.235340(1)

Thresholds of polymers (random walks) on a square lattice

System is composed of ordinary (non-avoiding) random walks of length l on the square lattice.[23]

l (polymer length)zBond percolation
140.5(exact)[24]
240.47697(4)
440.44892(6)
840.41880(4)

Thresholds of self-avoiding walks of length k added by random sequential adsorption

kzSite thresholds Bond thresholds
140.593(2)[25] 0.5009(2)
240.564(2)0.4859(2)
340.552(2)0.4732(2)
440.542(2)0.4630(2)
540.531(2)0.4565(2)
640.522(2)0.4497(2)
740.511(2)0.4423(2)
840.502(2)0.4348(2)
940.493(2)0.4291(2)
1040.488(2)0.4232(2)
1140.482(2)0.4159(2)
1240.476(2)0.4114(2)
1340.471(2)0.4061(2)
1440.467(2)0.4011(2)
1540.4011(2)0.3979(2)

Thresholds for 2D continuum models

width=12% SystemΦc ηc nc
Disks of radius r0.67634831(2), 0.6763475(6),[26] 0.676339(4),[27] 0.6764(4),[28] 0.6766(5),[29] 0.676(2),[30] 0.679, 0.674[31] 0.676,[32] 0.680[33] 1.1280867(5),[34] 1.1276(9), 1.12808737(6), 1.128085(2), 1.128059(12), 1.13, 0.8[35] 1.43632505(10),[36] 1.43632545(8), 1.436322(2), 1.436289(16), 1.436320(4),[37] 1.436323(3),[38] 1.438(2),[39] 1.216 (48)[40]
Ellipses, ε = 1.50.00430.004312.059081(7)
Ellipses, ε = 0.651.052.28
Ellipses, ε = 20.6287945(12), 0.63[41] 0.991000(3), 0.992.523560(8), 2.5
Ellipses, ε = 30.560.823.157339(8), 3.14
Ellipses, ε = 40.50.693.569706(8), 3.5
Ellipses, ε = 50.455,[42] 0.455, 0.460.6073.861262(12), 3.86
Ellipses, ε = 64.079365(17)
Ellipses, ε = 74.249132(16)
Ellipses, ε = 84.385302(15)
Ellipses, ε = 94.497000(8)
Ellipses, ε = 100.301, 0.303, 0.300.358 0.364.590416(23) 4.56, 4.5
Ellipses, ε = 154.894752(30)
Ellipses, ε = 200.178, 0.170.1965.062313(39), 4.99
Ellipses, ε = 500.0810.0845.393863(28), 5.38
Ellipses, ε = 1000.04170.04265.513464(40), 5.42
Ellipses, ε = 2000.0210.02125.40
0.00430.004315.624756(22), 5.5
Superellipses, ε = 1, m = 1.50.671
Superellipses, ε = 2.5, m = 1.50.599
Superellipses, ε = 5, m = 1.50.469
Superellipses, ε = 10, m = 1.50.322
disco-rectangles, ε = 1.51.894
disco-rectangles, ε = 22.245
Aligned squares of side

\ell

0.66675(2), 0.66674349(3),[43] 0.66653(1), 0.6666(4),[44] 0.668 1.09884280(9), 1.0982(3),[45] 1.098(1)1.09884280(9), 1.0982(3), 1.098(1)
Randomly oriented squares0.62554075(4), 0.6254(2) 0.625,0.9822723(1), 0.9819(6) 0.982278(14)[46] 0.9822723(1), 0.9819(6) 0.982278(14)
Randomly oriented squares within angle

\pi/4

0.6255(1)0.98216(15)
Rectangles, ε = 1.10.624870(7)0.980484(19)1.078532(21)
Rectangles, ε = 20.590635(5)0.893147(13)1.786294(26)
Rectangles, ε = 30.5405983(34)0.777830(7)2.333491(22)
Rectangles, ε = 40.4948145(38)0.682830(8)2.731318(30)
Rectangles, ε = 50.4551398(31), 0.4510.607226(6)3.036130(28)
Rectangles, ε = 100.3233507(25), 0.3190.3906022(37)3.906022(37)
Rectangles, ε = 200.2048518(22)0.2292268(27)4.584535(54)
Rectangles, ε = 500.09785513(36)0.1029802(4)5.149008(20)
Rectangles, ε = 1000.0523676(6)0.0537886(6)5.378856(60)
Rectangles, ε = 2000.02714526(34)0.02752050(35)5.504099(69)
Rectangles, ε = 10000.00559424(6)0.00560995(6)5.609947(60)
Sticks (needles) of length

\ell

5.63726(2),[47] 5.6372858(6), 5.637263(11), 5.63724(18) [48]
sticks with log-normal length dist. STD=0.54.756(3)
sticks with correlated angle dist. s=0.56.6076(4)
Power-law disks, x = 2.050.993(1)[49] 4.90(1)0.0380(6)
Power-law disks, x = 2.250.8591(5)1.959(5)0.06930(12)
Power-law disks, x = 2.50.7836(4)1.5307(17)0.09745(11)
Power-law disks, x = 40.69543(6)1.18853(19)0.18916(3)
Power-law disks, x = 50.68643(13)1.1597(3)0.22149(8)
Power-law disks, x = 60.68241(8)1.1470(1)0.24340(5)
Power-law disks, x = 70.6803(8)1.140(6)0.25933(16)
Power-law disks, x = 80.67917(9)1.1368(5)0.27140(7)
Power-law disks, x = 90.67856(12)1.1349(4)0.28098(9)
Voids around disks of radius r1 − Φc(disk) = 0.32355169(2), 0.318(2), 0.3261(6)[50]

For disks,

nc=4r2N/L2

equals the critical number of disks per unit area, measured in units of the diameter

2r

, where

N

is the number of objects and

L

is the system size

For disks,

ηc=\pir2N/L2=(\pi/4)nc

equals critical total disk area.

4ηc

gives the number of disk centers within the circle of influence (radius 2 r).

rc=L\sqrt{

ηc
\piN
} = \frac \sqrt is the critical disk radius.

ηc=\piabN/L2

for ellipses of semi-major and semi-minor axes of a and b, respectively. Aspect ratio

\epsilon=a/b

with

a>b

.

ηc=\ellmN/L2

for rectangles of dimensions

\ell

and

m

. Aspect ratio

\epsilon=\ell/m

with

\ell>m

.

ηc=\pixN/(4L2(x-2))

for power-law distributed disks with

\hbox{Prob(radius}\geR)=R-x

,

R\ge1

.

\phic=1-

c
e

equals critical area fraction.

For disks, Ref.[30] use

\phic=1-e-\pi

where

x

is the density of disks of radius

1/\sqrt{2}

.

nc=\ell2N/L2

equals number of objects of maximum length

\ell=2a

per unit area.

For ellipses,

nc=(4\epsilon/\pi)ηc

For void percolation,

\phic=

c
e

is the critical void fraction.

For more ellipse values, see [41]

For more rectangle values, see

Both ellipses and rectangles belong to the superellipses, with

|x/a|2m+|y/b|2m=1

. For more percolation values of superellipses, see.[32]

For the monodisperse particle systems, the percolation thresholds of concave-shaped superdisks are obtained as seen in [51]

For binary dispersions of disks, see [26] [52] [53]

Thresholds on 2D random and quasi-lattices

Latticez

\overlinez

Site percolation thresholdBond percolation threshold
Relative neighborhood graph2.55760.796(2)[54] 0.771(2)
30.71410(2),[55] 0.7151*0.68,[56] 0.6670(1), 0.6680(5), 0.666931(5)
Voronoi covering/medial40.666931(2)0.53618(2)
Randomized kagome/square-octagon, fraction r=40.6599
Penrose rhomb dual40.6381(3)0.5233(2)
Gabriel graph40.6348(8),[57] 0.62[58] 0.5167(6), 0.52
Random-line tessellation, dual40.586(2)[59]
40.5837(3), 0.0.5610(6) (weighted bonds)[60] 0.58391(1)[61] 0.483(5),[62] 0.4770(2)
Octagonal lattice, "chemical" links (Ammann–Beenker tiling)40.585[63] 0.48
Octagonal lattice, "ferromagnetic" links5.170.5430.40
Dodecagonal lattice, "chemical" links3.630.6280.54
Dodecagonal lattice, "ferromagnetic" links4.270.6170.495
6[64] 0.3333(1)[65] 0.3326(5),[66] 0.333069(2) -Uniform Infinite Planar Triangulation[67] 6(2 – 1)/11 ≈ 0.2240[68] [69]
*Theoretical estimate

Thresholds on 2D correlated systems

Assuming power-law correlations

C(r)\sim|r|-\alpha

lattice αSite percolation threshold Bond percolation threshold
square 30.561406(4)[70]
square 20.550143(5)
square 0.10.508(4)

Thresholds on slabs

h is the thickness of the slab, h × ∞ × ∞. Boundary conditions (b.c.) refer to the top and bottom planes of the slab.

Latticehz

\overlinez

Site percolation threshold Bond percolation threshold
simple cubic (open b.c.)255 0.47424, 0.4756[71]
bcc (open b.c.)20.4155
hcp (open b.c.)20.2828
diamond (open b.c.)20.5451
simple cubic (open b.c.)30.4264
bcc (open b.c.)30.3531
bcc (periodic b.c.)30.21113018(38)
hcp (open b.c.)30.2548
diamond (open b.c.)30.5044
simple cubic (open b.c.)40.3997,[72] 0.3998
bcc (open b.c.)40.3232
bcc (periodic b.c.)40.20235168(59)
hcp (open b.c.)40.2405
diamond (open b.c.)40.4842
simple cubic (periodic b.c.)5660.278102(5)
simple cubic (open b.c.)60.3708
simple cubic (periodic b.c.)6660.272380(2)
bcc (open b.c.)60.2948
hcp (open b.c.)60.2261
diamond (open b.c.)60.4642
simple cubic (periodic b.c.)76 60.3459514(12)[73] 0.268459(1)
simple cubic (open b.c.)80.3557, 0.3565
simple cubic (periodic b.c.)8660.265615(5)
bcc (open b.c.)80.2811
hcp (open b.c.)80.2190
diamond (open b.c.)80.4549
simple cubic (open b.c.)120.3411
bcc (open b.c.)120.2688
hcp (open b.c.)120.2117
diamond (open b.c.)120.4456
simple cubic (open b.c.)160.3219, 0.3339
bcc (open b.c.)160.2622
hcp (open b.c.)160.2086
diamond (open b.c.)160.4415
simple cubic (open b.c.)320.3219,
simple cubic (open b.c.)640.3165,
simple cubic (open b.c.)1280.31398,

Percolation in 3D

Latticez

\overlinez

filling factor*filling fraction*width=41% Site percolation thresholdwidth=25% Bond percolation threshold
(10,3)-a oxide (or site-bond)[74] 23 322.40.748713(22)= (pc,bond(10,3) – a) = 0.742334(25)
(10,3)-b oxide (or site-bond)23 322.40.233[75] 0.1740.745317(25)= (pc,bond(10,3) – b) = 0.739388(22)
silicon dioxide (diamond site-bond)4,222 0.638683(35)
Modified (10,3)-b32,22 0.627[76]
(8,3)-a 330.577962(33)[77] 0.555700(22)
(10,3)-a gyroid[78] 330.571404(40)0.551060(37)
(10,3)-b330.565442(40)0.546694(33)
cubic oxide (cubic site-bond)6,233.50.524652(50)
bcc dual40.4560(6)0.4031(6)
ice Ih44π / 16 = 0.3400870.1470.433(11)[79] 0.388(10)[80]
diamond (Ice Ic)44π / 16 = 0.3400870.14623320.4299(8), 0.4299870(4),[81],[82] 0.4297(4) [83] 0.4301(4),[84] 0.428(4), 0.425(15),[85] 0.425, 0.436(12)0.3895892(5), 0.3893(2), 0.3893(3), 0.388(5), 0.3886(5), 0.388(5)[86] 0.390(11)
diamond dual6 0.3904(5)[87] 0.2350(5)
3D kagome (covering graph of the diamond lattice)6π / 12 = 0.370240.14420.3895(2) =pc(site) for diamond dual and pc(bond) for diamond lattice0.2709(6)
Bow-tie stack dual5 0.3480(4)0.2853(4)
honeycomb stack550.3701(2)0.3093(2)
octagonal stack dual550.3840(4)0.3168(4)
pentagonal stack5 0.3394(4)0.2793(4)
kagome stack660.4534500.15170.3346(4) 0.2563(2)
fcc dual42,85 0.3341(5)0.2703(3)
simple cubic66π / 6 = 0.52359880.16315740.307(10), 0.307, 0.3115(5),[88] 0.3116077(2),[89] 0.311604(6),[90] 0.311605(5),[91] 0.311600(5),[92] 0.3116077(4),[93] 0.3116081(13),[94] 0.3116080(4), 0.3116060(48), 0.3116004(35),[95] 0.31160768(15)0.247(5), 0.2479(4), 0.2488(2),[96] 0.24881182(10), 0.2488125(25), 0.2488126(5),[97]
hcp dual44,825 0.3101(5)0.2573(3)
dice stack5,86π / 9 = 0.6046000.18130.2998(4)0.2378(4)
bow-tie stack770.2822(6)0.2092(4)
Stacked triangular / simple hexagonal880.26240(5),[98] 0.2625(2),[99] 0.2623(2)0.18602(2), 0.1859(2)
octagonal (union-jack) stack6,1080.2524(6)0.1752(2)
bcc880.243(10), 0.243, 0.2459615(10), 0.2460(3),[100] 0.2464(7),[101] 0.2458(2)0.178(5), 0.1795(3), 0.18025(15), 0.1802875(10)
simple cubic with 3NN (same as bcc)880.2455(1), 0.2457(7)[102]
fcc, D31212π / (3) = 0.7404800.1475300.195, 0.198(3),[103] 0.1998(6), 0.1992365(10),[104] 0.19923517(20), 0.1994(2), 0.199236(4)[105] 0.1198(3), 0.1201635(10) 0.120169(2)
1212π / (3) = 0.7404800.1475450.195(5), 0.1992555(10)[106] 0.1201640(10), 0.119(2)
La2−x Srx Cu O412120.19927(2)[107]
simple cubic with 2NN (same as fcc)12120.1991(1)
simple cubic with NN+4NN 12 120.15040(12),[108] 0.1503793(7)0.1068263(7)[109]
simple cubic with 3NN+4NN 14 140.20490(12) 0.1012133(7)
bcc NN+2NN (= sc(3,4) sc-3NN+4NN)14140.175, 0.1686,(20) 0.1759432(8)0.0991(5), 0.1012133(7),[110] 0.1759432(8)
Nanotube fibers on FCC14140.1533(13)[111]
simple cubic with NN+3NN 14 140.1420(1)[112] 0.0920213(7)
simple cubic with 2NN+4NN 18 180.15950(12)0.0751589(9)
simple cubic with NN+2NN 18180.137, 0.136, 0.1372(1), 0.13735(5), 0.1373045(5)0.0752326(6)
fcc with NN+2NN (=sc-2NN+4NN)18180.136, 0.1361408(8)0.0751589(9)
simple cubic with short-length correlation6+6+0.126(1)[113]
simple cubic with NN+3NN+4NN 20 200.11920(12)0.0624379(9)
simple cubic with 2NN+3NN20200.1036(1)0.0629283(7)
simple cubic with NN+2NN+4NN 24 240.11440(12)0.0533056(6)
simple cubic with 2NN+3NN+4NN 26 260.11330(12)0.0474609(9)
simple cubic with NN+2NN+3NN26260.097, 0.0976(1), 0.0976445(10), 0.0976444(6)0.0497080(10)
bcc with NN+2NN+3NN26260.095, 0.0959084(6)0.0492760(10)
simple cubic with NN+2NN+3NN+4NN 32 320.10000(12), 0.0801171(9) 0.0392312(8)
fcc with NN+2NN+3NN42420.061, 0.0610(5),[114] 0.0618842(8) 0.0290193(7)
fcc with NN+2NN+3NN+4NN54540.0500(5)
sc-1,2,3,4,5 simple cubic with NN+2NN+3NN+4NN+5NN56560.0461815(5)0.0210977(7)
sc-1,...,6 (2x2x2 cube)80800.0337049(9), 0.03373(13) 0.0143950(10)
sc-1,...,7 92920.0290800(10)0.0123632(8)
sc-1,...,8 1221220.0218686(6)0.0091337(7)
sc-1,...,9 1461460.0184060(10)0.0075532(8)
sc-1,...,10 1701700.0064352(8)
sc-1,...,11 1781780.0061312(8)
sc-1,...,12 2022020.0053670(10)
sc-1,...,13 250250 0.0042962(8)
3x3x3 cube274274φc= 0.76564(1), pc = 0.0098417(7), 0.009854(6)
4x4x4 cube636636φc=0.76362(1), pc = 0.0042050(2), 0.004217(3)
5x5x5 cube12141250φc=0.76044(2), pc = 0.0021885(2), 0.002185(4)
6x6x6 cube205620560.001289(2)

Filling factor = fraction of space filled by touching spheres at every lattice site (for systems with uniform bond length only). Also called Atomic Packing Factor.

Filling fraction (or Critical Filling Fraction) = filling factor * pc(site).

NN = nearest neighbor, 2NN = next-nearest neighbor, 3NN = next-next-nearest neighbor, etc.

kxkxk cubes are cubes of occupied sites on a lattice, and are equivalent to extended-range percolation of a cube of length (2k+1), with edges and corners removed, with z = (2k+1)3-12(2k-1)-9 (center site not counted in z).

Question: the bond thresholds for the hcp and fcc latticeagree within the small statistical error. Are they identical,and if not, how far apart are they? Which threshold is expected to be bigger? Similarly for the ice and diamond lattices. See [115]

3D distorted lattices

Here, one distorts a regular lattice of unit spacing by moving vertices uniformly within the cube

(x-\alpha,x+\alpha),(y-\alpha,y+\alpha),(z-\alpha,z+\alpha)

, and considers percolation when sites are within Euclidean distance

d

of each other.
Lattice

\overlinez

\alpha

d

Site percolation thresholdBond percolation threshold
cubic 0.051.00.60254(3)
0.11.006250.58688(4)
0.151.0250.55075(2)
0.1751.050.50645(5)
0.21.10.44342(3)

Overlapping shapes on 3D lattices

Site threshold is the number of overlapping objects per lattice site. The coverage φc is the net fraction of sites covered, and v is the volume (number of cubes). Overlapping cubes are given in the section on thresholds of 3D lattices. Here z is the coordination number to k-mers of either orientation, with

z=6k2+18k-4

SystemkzSite coverage φcSite percolation threshold pc
1 x 2 dimer, cubic lattice2560.245420.045847(2)
1 x 3 trimer, cubic lattice31040.19578 0.023919(9)
1 x 4 stick, cubic lattice41640.160550.014478(7)
1 x 5 stick, cubic lattice52360.134880.009613(8)
1 x 6 stick, cubic lattice63200.11569 0.006807(2)
2 x 2 plaquette, cubic lattice20.22710 0.021238(2)
3 x 3 plaquette, cubic lattice30.18686 0.007632(5)
4 x 4 plaquette, cubic lattice40.16159 0.003665(3)
5 x 5 plaquette, cubic lattice50.14316 0.002058(5)
6 x 6 plaquette, cubic lattice60.12900 0.001278(5)

The coverage is calculated from

pc

by

\phic=

3k
1-(1-p
c)

for sticks, and

\phic=

3k2
1-(1-p
c)

for plaquettes.

Thresholds for 3D continuum models

All overlapping except for jammed spheres and polymer matrix.

SystemΦc ηc
Spheres of radius r0.289,[117] 0.293,[118] 0.286,[119] 0.295. 0.2895(5),[120] 0.28955(7),[121] 0.2896(7),[122] 0.289573(2),[123] 0.2896,[124] 0.2854, 0.290,[125] 0.290[126] 0.3418(7), 0.3438(13), 0.341889(3), 0.3360, 0.34189(2) [corrected], 0.341935(8), 0.335,
Oblate ellipsoids with major radius r and aspect ratio 0.2831[127] 0.3328
Prolate ellipsoids with minor radius r and aspect ratio 0.2757, 0.2795, 0.27630.3278
Oblate ellipsoids with major radius r and aspect ratio 20.2537, 0.2629, 0.2540.3050
Prolate ellipsoids with minor radius r and aspect ratio 20.2537, 0.2618, 0.25(2),[128] 0.25070.3035, 0.29(3)
Oblate ellipsoids with major radius r and aspect ratio 30.22890.2599
Prolate ellipsoids with minor radius r and aspect ratio 30.2033, 0.2244, 0.20(2)0.2541, 0.22(3)
Oblate ellipsoids with major radius r and aspect ratio 40.20030.2235
Prolate ellipsoids with minor radius r and aspect ratio 40.1901, 0.16(2)0.2108, 0.17(3)
Oblate ellipsoids with major radius r and aspect ratio 50.17570.1932
Prolate ellipsoids with minor radius r and aspect ratio 50.1627, 0.13(2)0.1776, 0.15(2)
Oblate ellipsoids with major radius r and aspect ratio 100.0895, 0.10580.1118
Prolate ellipsoids with minor radius r and aspect ratio 100.0724, 0.08703, 0.07(2)0.09105, 0.07(2)
Oblate ellipsoids with major radius r and aspect ratio 1000.012480.01256
Prolate ellipsoids with minor radius r and aspect ratio 1000.0069490.006973
Oblate ellipsoids with major radius r and aspect ratio 10000.0012750.001276
Oblate ellipsoids with major radius r and aspect ratio 20000.0006370.000637
Spherocylinders with H/D = 10.2439(2)
Spherocylinders with H/D = 40.1345(1)
Spherocylinders with H/D = 100.06418(20)
Spherocylinders with H/D = 500.01440(8)
Spherocylinders with H/D = 1000.007156(50)
Spherocylinders with H/D = 2000.003724(90)
Aligned cylinders0.2819(2)0.3312(1)[129]
Aligned cubes of side

\ell=2a

0.2773(2) 0.27727(2), 0.27730261(79)0.3247(3), 0.3248(3), 0.32476(4) 0.324766(1)
Randomly oriented icosahedra0.3030(5)
Randomly oriented dodecahedra0.2949(5)
Randomly oriented octahedra0.2514(6)
Randomly oriented cubes of side

\ell=2a

0.2168(2) 0.2174, 0.2444(3), 0.2443(5)[130]
Randomly oriented tetrahedra0.1701(7)
Randomly oriented disks of radius r (in 3D)0.9614(5)[131]
Randomly oriented square plates of side

\sqrt{\pi}r

0.8647(6)
Randomly oriented triangular plates of side

\sqrt{2\pi}/31/4r

0.7295(6)
Jammed spheres (average z = 6)0.183(3), 0.1990,[132] see also contact network of jammed spheres below. 0.59(1) (volume fraction of all spheres)

ηc=(4/3)\pir3N/L3

is the total volume (for spheres), where N is the number of objects and L is the system size.

\phic=1-

c
e

is the critical volume fraction, valid for overlapping randomly placed objects.

For disks and plates, these are effective volumes and volume fractions.

For void ("Swiss-Cheese" model),

\phic=

c
e

is the critical void fraction.

For more results on void percolation around ellipsoids and elliptical plates, see.

For more ellipsoid percolation values see.[127]

For spherocylinders, H/D is the ratio of the height to the diameter of the cylinder, which is then capped by hemispheres. Additional values are given in.[122]

For superballs, m is the deformation parameter, the percolation values are given in.,[133] [134] In addition, the thresholds of concave-shaped superballs are also determined in [51]

For cuboid-like particles (superellipsoids), m is the deformation parameter, more percolation values are given in.

Void percolation in 3D

Void percolation refers to percolation in the space around overlapping objects. Here

\phic

refers to the fraction of the space occupied by the voids (not of the particles) at the critical point, and is related to

ηc

by

\phic=

c
e

.

ηc

is defined as in the continuum percolation section above.
SystemΦc ηc
Voids around disks of radius r22.86(2)
Voids around randomly oriented tetrahedra0.0605(6)
Voids around oblate ellipsoids of major radius r and aspect ratio 320.5308(7)0.6333
Voids around oblate ellipsoids of major radius r and aspect ratio 160.3248(5)1.125
Voids around oblate ellipsoids of major radius r and aspect ratio 101.542(1)
Voids around oblate ellipsoids of major radius r and aspect ratio 80.1615(4)1.823
Voids around oblate ellipsoids of major radius r and aspect ratio 40.0711(2)2.643, 2.618(5)
Voids around oblate ellipsoids of major radius r and aspect ratio 23.239(4) 
Voids around prolate ellipsoids of aspect ratio 80.0415(7)
Voids around prolate ellipsoids of aspect ratio 60.0397(7)
Voids around prolate ellipsoids of aspect ratio 40.0376(7)
Voids around prolate ellipsoids of aspect ratio 30.03503(50)
Voids around prolate ellipsoids of aspect ratio 20.0323(5)
Voids around aligned square prisms of aspect ratio 20.0379(5)
Voids around randomly oriented square prisms of aspect ratio 200.0534(4)
Voids around randomly oriented square prisms of aspect ratio 150.0535(4)
Voids around randomly oriented square prisms of aspect ratio 100.0524(5)
Voids around randomly oriented square prisms of aspect ratio 80.0523(6)
Voids around randomly oriented square prisms of aspect ratio 70.0519(3)
Voids around randomly oriented square prisms of aspect ratio 60.0519(5)
Voids around randomly oriented square prisms of aspect ratio 50.0515(7)
Voids around randomly oriented square prisms of aspect ratio 40.0505(7)
Voids around randomly oriented square prisms of aspect ratio 30.0485(11)
Voids around randomly oriented square prisms of aspect ratio 5/20.0483(8)
Voids around randomly oriented square prisms of aspect ratio 20.0465(7)
Voids around randomly oriented square prisms of aspect ratio 3/20.0461(14)
Voids around hemispheres0.0455(6)
Voids around aligned tetrahedra0.0605(6)
Voids around randomly oriented tetrahedra0.0605(6)
Voids around aligned cubes0.036(1), 0.0381(3)
Voids around randomly oriented cubes0.0452(6), 0.0449(5)
Voids around aligned octahedra0.0407(3)
Voids around randomly oriented octahedra0.0398(5)
Voids around aligned dodecahedra0.0356(3)
Voids around randomly oriented dodecahedra0.0360(3)
Voids around aligned icosahedra0.0346(3)
Voids around randomly oriented icosahedra0.0336(7)
Voids around spheres0.034(7),[135] 0.032(4),[136] 0.030(2),[137] 0.0301(3),[138] 0.0294,[139] 0.0300(3),[140] 0.0317(4),[141] 0.0308(5)[142] 0.0301(1), 0.0301(1)[143] 3.506(8), 3.515(6),[144] 3.510(2)[145]

Thresholds on 3D random and quasi-lattices

Latticez

\overlinez

Site percolation thresholdBond percolation threshold
Contact network of packed spheres60.310(5),[146] 0.287(50),[147] 0.3116(3),
Random-plane tessellation, dual60.290(7)[148]
Icosahedral Penrose60.285[149] 0.225
Penrose w/2 diagonals6.764 0.2710.207
Penrose w/8 diagonals12.7640.1880.111
Voronoi network15.540.1453(20)[150] 0.0822(50)

Thresholds for other 3D models

Latticez

\overlinez

Site percolation thresholdCritical coverage fraction

\phic

Bond percolation threshold
Drilling percolation, simple cubic lattice*660.6345(3),[151] 0.6339(5),[152] 0.633965(15)[153] 0.25480
Drill in z direction on cubic lattice, remove single sites 660.592746 (columns), 0.4695(10) (sites)0.2784
Random tube model, simple cubic lattice0.231456(6)[154]
Pac-Man percolation, simple cubic lattice0.139(6)[155]

*

In drilling percolation, the site threshold

pc

represents the fraction of columns in each direction that have not been removed, and

\phic=p

3
c
. For the 1d drilling, we have

\phic=pc

(columns)

pc

(sites).

In tube percolation, the bond threshold represents the value of the parameter

\mu

such that the probability of putting a bond between neighboring vertical tube segments is
-\muhi
1-e
, where

hi

is the overlap height of two adjacent tube segments.[154]

Thresholds in different dimensional spaces

Continuum models in higher dimensions

dSystemΦc ηc
4Overlapping hyperspheres0.1223(4)0.1300(13), 0.1304(5)
4Aligned hypercubes0.1132(5), 0.1132348(17) 0.1201(6)
4Voids around hyperspheres0.00211(2)6.161(10) 6.248(2),
5Overlapping hyperspheres0.0544(6), 0.05443(7)
5Aligned hypercubes0.04900(7), 0.0481621(13)0.05024(7)
5Voids around hyperspheres1.26(6)x10−48.98(4), 9.170(8)
6Overlapping hyperspheres0.02391(31), 0.02339(5)
6Aligned hypercubes0.02082(8), 0.0213479(10)0.02104(8)
6Voids around hyperspheres 8.0(6)x10−6 11.74(8), 12.24(2),
7Overlapping hyperspheres0.01102(16), 0.01051(3)
7Aligned hypercubes0.00999(5), 0.0097754(31)0.01004(5)
7Voids around hyperspheres 15.46(5)
8Overlapping hyperspheres0.00516(8), 0.004904(6)
8Aligned hypercubes0.004498(5)
8Voids around hyperspheres 18.64(8)
9Overlapping hyperspheres0.002353(4)
9Aligned hypercubes0.002166(4)
9Voids around hyperspheres 22.1(4)
10Overlapping hyperspheres0.001138(3)
10Aligned hypercubes0.001058(4)
11Overlapping hyperspheres0.0005530(3)
11Aligned hypercubes0.0005160(3)

ηc=(\pid/2/\Gamma[d/2+1])rdN/Ld.

In 4d,

ηc=(1/2)\pi2r4N/L4

.

In 5d,

ηc=(8/15)\pi2r5N/L5

.

In 6d,

ηc=(1/6)\pi3r6N/L6

.

\phic=1-

c
e

is the critical volume fraction, valid for overlapping objects.

For void models,

\phic=

c
e

is the critical void fraction, and

ηc

is the total volume of the overlapping objects

Thresholds on hypercubic lattices

dzSite thresholds Bond thresholds
480.198(1)[156] 0.197(6), 0.1968861(14),[157] 0.196889(3),[158] 0.196901(5),[159] 0.19680(23),[160] 0.1968904(65), 0.19688561(3)0.1600(1), 0.16005(15), 0.1601314(13), 0.160130(3), 0.1601310(10),[161] 0.1601312(2), 0.16013122(6)
5100.141(1),0.198(1) 0.141(3), 0.1407966(15), 0.1407966(26), 0.14079633(4)0.1181(1),[162] 0.118(1), 0.11819(4), 0.118172(1), 0.1181718(3) 0.11817145(3)
6120.106(1), 0.108(3), 0.109017(2), 0.1090117(30), 0.109016661(8)0.0943(1), 0.0942(1), 0.0942019(6), 0.09420165(2)
7140.05950(5), 0.088939(20),[163] 0.0889511(9), 0.0889511(90),[164] 0.088951121(1),0.0787(1), 0.078685(30), 0.0786752(3), 0.078675230(2)
8160.0752101(5), 0.075210128(1)0.06770(5), 0.06770839(7), 0.0677084181(3)
9180.0652095(3), 0.0652095348(6)0.05950(5),[165] 0.05949601(5), 0.0594960034(1)
10200.0575930(1), 0.0575929488(4)0.05309258(4), 0.0530925842(2)
11220.05158971(8), 0.0515896843(2)0.04794969(1), 0.04794968373(8)
12240.04673099(6), 0.0467309755(1)0.04372386(1), 0.04372385825(10)
13260.04271508(8), 0.04271507960(10)[166] 0.04018762(1), 0.04018761703(6)

For thresholds on high dimensional hypercubic lattices, we have the asymptotic series expansions [167] [168] [169]

site(d)=\sigma
p
c

-1+

3
2

\sigma-2+

15
4

\sigma-3+

83
4

\sigma-4+

6577
48

\sigma-5+

119077
96

\sigma-6+{lO}(\sigma-7)

bond(d)=\sigma
p
c

-1+

5
2

\sigma-3+

15
2

\sigma-4+57\sigma-5+

4855
12

\sigma-6+{lO}(\sigma-7)

where

\sigma=2d-1

. For 13-dimensional bond percolation, for example, the error with the measured value is less than 10−6, and these formulas can be useful for higher-dimensional systems.

Thresholds in other higher-dimensional lattices

dlatticezSite thresholdsBond thresholds
4diamond50.2978(2)0.2715(3)
4kagome80.2715(3)[170] 0.177(1)
4bcc160.1037(3)0.074(1), 0.074212(1)[171]
4fcc, D4, hypercubic 2NN240.0842(3), 0.08410(23), 0.0842001(11)0.049(1), 0.049517(1), 0.0495193(8)
4hypercubic NN+2NN320.06190(23), 0.0617731(19)[172] 0.035827(1), 0.0338047(27)
4hypercubic 3NN320.04540(23)
4hypercubic NN+3NN400.04000(23)0.0271892(22)
4hypercubic 2NN+3NN560.03310(23)0.0194075(15)
4hypercubic NN+2NN+3NN640.03190(23), 0.0319407(13) 0.0171036(11)
4hypercubic NN+2NN+3NN+4NN 880.0231538(12) 0.0122088(8)
4hypercubic NN+...+5NN1360.0147918(12) 0.0077389(9)
4hypercubic NN+...+6NN2320.0088400(10) 0.0044656(11)
4hypercubic NN+...+7NN2960.0070006(6) 0.0034812(7)
4hypercubic NN+...+8NN3200.0064681(9) 0.0032143(8)
4hypercubic NN+...+9NN4240.0048301(9) 0.0024117(7)
5diamond60.2252(3)0.2084(4)
5kagome100.2084(4)0.130(2)
5bcc320.0446(4)0.033(1)
5fcc, D5, hypercubic 2NN400.0431(3), 0.0435913(6)0.026(2), 0.0271813(2)
5hypercubic NN+2NN500.0334(2)[173] 0.0213(1)
6diamond70.1799(5)0.1677(7)
6kagome120.1677(7)
6fcc, D6600.0252(5), 0.02602674(12)0.01741556(5)
6bcc640.0199(5)
6E6720.02194021(14)0.01443205(8)
7fcc, D7840.01716730(5)0.012217868(13)
7E71260.01162306(4)0.00808368(2)
8fcc, D81120.01215392(4)0.009081804(6)
8E82400.00576991(2)0.004202070(2)
9fcc, D91440.00905870(2)0.007028457(3)
9

Λ9

2720.00480839(2)0.0037006865(11)
10fcc, D101800.007016353(9)0.005605579(6)
11fcc, D112200.005597592(4)0.004577155(3)
12fcc, D122640.004571339(4)0.003808960(2)
13fcc, D133120.003804565(3)0.0032197013(14)

Thresholds in one-dimensional long-range percolation

In a one-dimensional chain we establish bonds between distinct sites

i

and

j

with probability
p=C
|i-j|1+\sigma
decaying as a power-law with an exponent

\sigma>0

. Percolation occurs[174] [175] at a critical value

Cc<1

for

\sigma<1

. The numerically determined percolation thresholds are given by:
Critical thresholds

Cc

as a function of

\sigma

.[176]
The dotted line is the rigorous lower bound.
0.10.047685(8)
0.20.093211(16)
0.30.140546(17)
0.40.193471(15)
0.50.25482(5)
0.60.327098(6)
0.70.413752(14)
0.80.521001(14)
0.90.66408(7)

Thresholds on hyperbolic, hierarchical, and tree lattices

In these lattices there may be two percolation thresholds: the lower threshold is the probability above which infinite clusters appear, and the upper is the probability above which there is a unique infinite cluster.

Latticez

\overlinez

Site percolation thresholdBond percolation threshold
LowerUpperLowerUpper
hyperbolic770.26931171(7), 0.200.73068829(7), 0.73(2)[177] 0.20, 0.1993505(5)0.37, 0.4694754(8)
hyperbolic880.20878618(9)0.79121382(9)0.1601555(2)0.4863559(6)
hyperbolic990.1715770(1)0.8284230(1)0.1355661(4)0.4932908(1)
hyperbolic550.29890539(6)0.8266384(5)0.27,[178] 0.2689195(3)[179] 0.52, 0.6487772(3)
hyperbolic660.22330172(3)0.87290362(7)0.20714787(9)0.6610951(2)
hyperbolic770.17979594(1)0.89897645(3)0.17004767(3)0.66473420(4)
hyperbolic880.151035321(9)0.91607962(7)0.14467876(3)0.66597370(3)
hyperbolic880.13045681(3)0.92820305(3)0.1260724(1)0.66641596(2)
hyperbolic550.26186660(5)0.89883342(7)0.263(10), 0.25416087(3)0.749(10) 0.74583913(3)
hyperbolic330.54710885(10)0.8550371(5), 0.86(2)0.53, 0.551(10), 0.5305246(8)0.72, 0.810(10), 0.8006495(5)
Cayley tree331
Enhanced binary tree (EBT)0.304(1), 0.306(10),[180] (− 3)/2 = 0.302776[181] 0.48, 0.564(1),[182] 0.564(10),
Enhanced binary tree dual0.436(1), 0.452(10)0.696(1), 0.699(10)
Non-Planar Hanoi Network (HN-NP)0.319445[183] 0.381996
Cayley tree with grandparents80.158656326[184] -
Note: is the Schläfli symbol, signifying a hyperbolic lattice in which n regular m-gons meet at every vertex

For bond percolation on, we have by duality

pc,\ell(P,Q)+pc,u(Q,P)=1

. For site percolation,

pc,\ell(3,Q)+pc,u(3,Q)=1

because of the self-matching of triangulated lattices.

Cayley tree (Bethe lattice) with coordination number

z:pc=1/(z-1)

Thresholds for directed percolation

Latticezwidth=40% Site percolation thresholdwidth=40% Bond percolation threshold
(1+1)-d honeycomb1.50.8399316(2), 0.839933(5),[185]

=\sqrt{pc({site

})} of (1+1)-d sq.
0.8228569(2), 0.82285680(6)
(1+1)-d kagome20.7369317(2), 0.73693182(4)0.6589689(2), 0.65896910(8)
(1+1)-d square, diagonal20.705489(4),[186] 0.705489(4),[187] 0.70548522(4),[188] 0.70548515(20),[189] 0.7054852(3),[190] 0.644701(2),[191] 0.644701(1),[192] 0.644701(1), 0.6447006(10), 0.64470015(5),[193] 0.644700185(5), 0.6447001(2), 0.643(2)
(1+1)-d triangular30.595646(3), 0.5956468(5), 0.5956470(3)0.478018(2), 0.478025(1), 0.4780250(4) 0.479(3)
(2+1)-d simple cubic, diagonal planes30.43531(1), 0.43531411(10)0.382223(7), 0.38222462(6) 0.383(3)
(2+1)-d square nn (= bcc)40.3445736(3),[194] 0.344575(15) 0.3445740(2) 0.2873383(1),[195] 0.287338(3)[196] 0.28733838(4) 0.287(3)
(2+1)-d fcc0.199(2))
(3+1)-d hypercubic, diagonal40.3025(10),[197] 0.30339538(5) 0.26835628(5), 0.2682(2)
(3+1)-d cubic, nn60.2081040(4)0.1774970(5)
(3+1)-d bcc80.160950(30), 0.16096128(3)0.13237417(2)
(4+1)-d hypercubic, diagonal50.23104686(3)0.20791816(2), 0.2085(2)[198]
(4+1)-d hypercubic, nn80.1461593(2), 0.1461582(3)[199] 0.1288557(5)
(4+1)-d bcc160.075582(17),[200] 0.0755850(3), 0.07558515(1)0.063763395(5)
(5+1)-d hypercubic, diagonal60.18651358(2)0.170615155(5), 0.1714(1)
(5+1)-d hypercubic, nn100.1123373(2)0.1016796(5)
(5+1)-d hypercubic bcc320.035967(23), 0.035972540(3)0.0314566318(5)
(6+1)-d hypercubic, diagonal70.15654718(1)0.145089946(3), 0.1458
(6+1)-d hypercubic, nn120.0913087(2)0.0841997(14)
(6+1)-d hypercubic bcc640.017333051(2)0.01565938296(10)
(7+1)-d hypercubic, diagonal80.135004176(10)0.126387509(3), 0.1270(1)
(7+1)-d hypercubic,nn140.07699336(7)0.07195(5)
(7+1)-d bcc1280.008 432 989(2)0.007 818 371 82(6)
nn = nearest neighbors. For a (d + 1)-dimensional hypercubic system, the hypercube is in d dimensions and the time direction points to the 2D nearest neighbors.

Directed percolation with multiple neighbors

Latticezwidth=40% Site percolation thresholdwidth=40% Bond percolation threshold
(1+1)-d square with 3 NN30.4395(3),[201]

Site-Bond Directed Percolation

p_b = bond threshold

p_s = site threshold

Site-bond percolation is equivalent to having different probabilities of connections:

P_0 = probability that no sites are connected

P_2 = probability that exactly one descendant is connected to the upper vertex (two connected together)

P_3 = probability that both descendants are connected to the original vertex (all three connected together)

Formulas:

P_0 = (1-p_s) + p_s(1-p_b)^2

P_2 = p_s p_b (1-p_b)

P_3 = p_s p_b^2

P_0 + 2P_2 + P_3 = 1

Latticezwidth=20% p_swidth=20% p_bwidth=20% P_0width=20% P_2width=20% P_3
(1+1)-d square 30.644701 1 0.126237 0.229062 0.415639
0.7 0.93585 0.1483760.196529 0.458567
0.75 0.88565 0.169703 0.166059 0.498178
0.80.841350.1923040.134616 0.538464
0.85 0.801900.2161430.1022420.579373
0.9 0.76645 0.241215 0.068981 0.620825
0.95 0.73450 0.267336 0.034889 0.662886
1 0.705489 0.294511 0 0.705489

Exact critical manifolds of inhomogeneous systems

Inhomogeneous triangular lattice bond percolation

1-p1-p2-p3+p1p2p3=0

Inhomogeneous honeycomb lattice bond percolation = kagome lattice site percolation

1-p1p2-p1p3-p2p3+p1p2p3=0

Inhomogeneous (3,12^2) lattice, site percolation[202]

1-3(s1s

2
2)

+(s1s

3
2)

=0,

or

s1s2=1-2\sin(\pi/18)

Inhomogeneous union-jack lattice, site percolation with probabilities

p1,p2,p3,p4

[203]

p3=1-p1;    p4=1-p2

Inhomogeneous martini lattice, bond percolation

1-(p1p2r3+p2p3r1+p1p3r2) -(p1p2r1r2+p1p3r1r3+p2p3r2r3) +p1p2p3(r1r2+r1r3+r2r3) +r1r2r3(p1p2+p1p3+p2p3) -2p1p2p3r1r2r3=0

Inhomogeneous martini lattice, site percolation. r = site in the star

1-r(p1p2+p1p3+p2p3-p1p2p3)=0

Inhomogeneous martini-A (3–7) lattice, bond percolation. Left side (top of "A" to bottom):

r2,p1

. Right side:

r1,p2

. Cross bond:

r3

.

1-p1r2-p2r1-p1p2r3-p1r1r3-p2r2r3+p1p2r1r3+p1p2r2r3 +p1r1r2r3+p2r1r2r3-p1p2r1r2r3=0

Inhomogeneous martini-B (3–5) lattice, bond percolation

Inhomogeneous martini lattice with outside enclosing triangle of bonds, probabilities

y,x,z

from inside to outside, bond percolation[204]

1-3z+z3-(1-z2)[3x2y(1+y-y2)(1+z)+x3y2(3-2y)(1+2z)]=0

Inhomogeneous checkerboard lattice, bond percolation[205]

1-(p1p2+p1p3+p1p4+p2p3+p2p4+p3p4)+p1p2p3+p1p2p4+p1p3p4+p2p3p4=0

Inhomogeneous bow-tie lattice, bond percolation[205]

1-(p1p2+p1p3+p1p4+p2p3+p2p4+p3p4)+p1p2p3+p1p2p4+p1p3p4+p2p3p4 -u(1-p1p2-p3p4+p1p2p3p4)=0

where

p1,p2,p3,p4

are the four bonds around the square and

u

is the diagonal bond connecting the vertex between bonds

p4,p1

and

p2,p3

.

See also

Notes and References

  1. Book: Stauffer . Dietrich . Introduction to percolation theory . Aharony . Amnon . 2003 . Taylor & Francis . 978-0-7484-0253-3 . Rev. 2nd . London.
  2. Kasteleyn . P. W. . C. M. . Fortuin . Phase transitions in lattice systems with random local properties . Journal of the Physical Society of Japan Supplement . 26 . 1969 . 11–14. 1969JPSJS..26...11K .
  3. Book: Grünbaum. Branko. Shephard. G. C.. amp. Tilings and Patterns. New York. W. H. Freeman. 1987. 978-0-7167-1193-3. registration.
  4. Berchenko. Yakir. Artzy-Randrup. Yael. Teicher. Mina. Stone. Lewi. 2009-03-30. Emergence and Size of the Giant Component in Clustered Random Graphs with a Given Degree Distribution. Physical Review Letters. en. 102. 13. 138701. 10.1103/PhysRevLett.102.138701. 19392410 . 2009PhRvL.102m8701B . 0031-9007.
  5. Li. Ming. Liu. Run-Ran. Lü. Linyuan. Hu. Mao-Bin. Xu. Shuqi. Zhang. Yi-Cheng. 2021-04-25. Percolation on complex networks: Theory and application. Physics Reports. en. 907. 1–68. 10.1016/j.physrep.2020.12.003. 2101.11761 . 2021PhR...907....1L . 231719831 . 0370-1573.
  6. Mertens . Stephan . 2022 . Exact site-percolation probability on the square lattice . Journal of Physics A: Mathematical and Theoretical . 55 . 33 . 334002 . 10.1088/1751-8121/ac4195 . 1751-8113. 2109.12102 . 2022JPhA...55G4002M .
  7. Jasna . C. K. . V. Sasidevan . Effect of shape asymmetry on percolation of aligned and overlapping objects on lattices . Preprint . 2023 . 2308.12932 .
  8. Nakanishi . H . 1987 . Critical behaviour of AB percolation in two dimensions . Journal of Physics A: Mathematical and General . 20 . 17 . 6075–6083 . 10.1088/0305-4470/20/17/040 . 0305-4470.
  9. Debierre . J -M . Bradley . R M . 1992. Scaling properties of antipercolation hulls on the triangular lattice . Journal of Physics A: Mathematical and General . 25 . 2 . 335–343 . 10.1088/0305-4470/25/2/014 . 0305-4470.
  10. Wu . Xian-Yuan . Popov . S. Yu. . 2003 . On AB Bond Percolation on the Square Lattice and AB Site Percolation on Its Line Graph . Journal of Statistical Physics . 110 . 1/2 . 443–449 . 10.1023/A:1021091316925.
  11. Kundu . Sumanta . Manna . S. S. . 2017-05-15 . Colored percolation . Physical Review E . en . 95 . 5 . 10.1103/PhysRevE.95.052124 . 2470-0045. 1709.00887 .
  12. Okubo . S. . M. Hayashi . S. Kimura . H. Ohta . M. Motokawa . H. Kikuchi . H. Nagasawa . Submillimeter wave ESR of triangular-kagome antiferromagnet Cu9X2(cpa)6 (X=Cl, Br) . Physica B . 246–247 . 2 . 1998 . 10.1016/S0921-4526(97)00985-X . 553–556. 1998PhyB..246..553O .
  13. Haji Akbari . Amir . R. M. Ziff . Percolation in networks with voids and bottlenecks . Physical Review E . 79 . 2 . 2009 . 021118 . 10.1103/PhysRevE.79.021118. 19391717 . 2009PhRvE..79b1118H . 0811.4575 . 2554311 .
  14. Lebrecht . W. . P. M. Centres. A. J. Ramirez-Pastor . Analytical approximation of the site percolation thresholds for monomers and dimers on two-dimensional lattices . Physica A . 516 . 2019 . 10.1016/j.physa.2018.10.023 . 133–143 . 2019PhyA..516..133L . 125418069 .
  15. Cornette . V. . A. J. Ramirez-Pastor . F. Nieto . Dependence of the percolation threshold on the size of the percolating species . Physica A . 327 . 1 . 2003 . 10.1016/S0378-4371(03)00453-9 . 71–75 . 2003PhyA..327...71C. 11336/138178 . free .
  16. Longone . Pablo . P.M. Centres . A. J. Ramirez-Pastor . Percolation of aligned rigid rods on two-dimensional triangular lattices . Physical Review E . 100 . 5 . 052104 . 1906.03966 . 2019. 10.1103/PhysRevE.100.052104 . 31870027 . 2019PhRvE.100e2104L . 182953009 .
  17. Budinski-Petkovic . Lj . I. Loncarevic . Z. M. Jacsik . S. B. Vrhovac . Jamming and percolation in random sequential adsorption of extended objects on a triangular lattice with quenched impurities . Journal of Statistical Mechanics: Theory and Experiment . 2016 . 5 . 2016 . 10.1088/1742-5468/2016/05/053101 . 053101. 2016JSMTE..05.3101B. 3913989 .
  18. Cherkasova . V. A. . Yu. Yu. Tarasevich . N. I. Lebovka . N.V. Vygornitskii . Percolation of the aligned dimers on a square lattice . Eur. Phys. J. B . 74 . 2 . 2010 . 10.1140/epjb/e2010-00089-2 . 205–209 . 2010EPJB...74..205C . 0912.0778 . 118485353 .
  19. Leroyer . Y. . E. Pommiers . Monte Carlo analysis of percolation of line segments on a square lattice . Phys. Rev. B . 50 . 5 . 1994 . 10.1103/PhysRevB.50.2795 . 9976520 . 2795–2799 . 1994PhRvB..50.2795L . cond-mat/9312066 . 119495907 .
  20. Vanderwalle . N. . S. Galam . M. Kramer . A new universality for random sequential deposition of needles . Eur. Phys. J. B . 14 . 3 . 2000 . 407–410 . 10.1007/s100510051047. cond-mat/0004271. 2000EPJB...14..407V. 11142384 .
  21. Kondrat . Grzegorz . Andrzej Pękalski . Percolation and jamming in random sequential adsorption of linear segments on a square lattice . Phys. Rev. E . 63 . 5 . 2001 . 051108 . 10.1103/PhysRevE.63.051108. 11414888 . cond-mat/0102031. 2001PhRvE..63e1108K. 44490067 .
  22. Haji-Akbari . A. . Nasim Haji-Akbari . Robert M. Ziff . Dimer Covering and Percolation Frustration . Phys. Rev. E . 92 . 3 . 2015 . 10.1103/PhysRevE.92.032134 . 26465453 . 032134 . 1507.04411 . 2015PhRvE..92c2134H . 34100812 .
  23. Zia . R. K. P. . W. Yong . B. Schmittmann . Beate Schmittmann . Percolation of a collection of finite random walks: a model for gas permeation through thin polymeric membranes . Journal of Mathematical Chemistry . 45 . 2009 . 58–64 . 10.1007/s10910-008-9367-6 . 94092783 .
  24. Wu . Yong . B. Schmittmann . Beate Schmittmann . R. K. P. Zia . Two-dimensional polymer networks near percolation . Journal of Physics A . 41 . 2 . 2008 . 025008 . 10.1088/1751-8113/41/2/025004 . 2008JPhA...41b5004W . 13053653 .
  25. Cornette . V. . A.J. Ramirez-Pastor . F. Nieto . Percolation of polyatomic species on a square lattice . European Physical Journal B . 36 . 3 . 2003 . 391–399 . 10.1140/epjb/e2003-00358-1 . 2003EPJB...36..391C . 119852589 .
  26. Quintanilla . John A. . R. M. Ziff . Asymmetry in the percolation thresholds of fully penetrable disks with two different radii . Physical Review E . 76 . 5 . 2007 . 051115 [6 pages] . 10.1103/PhysRevE.76.051115. 18233631 . 2007PhRvE..76e1115Q .
  27. Quintanilla . J . S. Torquato . R. M. Ziff . Efficient measurement of the percolation threshold for fully penetrable discs . J. Phys. A: Math. Gen. . 33 . 42 . 2000 . L399–L407 . 10.1088/0305-4470/33/42/104 . 2000JPhA...33L.399Q . 10.1.1.6.8207 .
  28. Lorenz . B . I. Orgzall . H.-O. Heuer . Universality and cluster structures in continuum models of percolation with two different radius distributions . J. Phys. A: Math. Gen. . 26 . 18 . 1993 . 4711–4712 . 10.1088/0305-4470/26/18/032. 1993JPhA...26.4711L.
  29. Rosso . M . Concentration gradient approach to continuum percolation in two dimensions . J. Phys. A: Math. Gen. . 22 . 4 . 1989 . L131–L136 . 10.1088/0305-4470/22/4/004. 1989JPhA...22L.131R.
  30. Gawlinski . Edward T . H. Eugene Stanley . Continuum percolation in two dimensions: Monte Carlo tests of scaling and universality for non-interacting discs . J. Phys. A: Math. Gen. . 14 . 8 . 1981 . L291–L299 . 10.1088/0305-4470/14/8/007. 1981JPhA...14L.291G .
  31. Pike . G. E. . C. H. Seager . Percolation and conductivity: A computer study I . Phys. Rev. B . 10 . 4 . 1974 . 1421–1434 . 10.1103/PhysRevB.10.1421. 1974PhRvB..10.1421P .
  32. Lin . Jianjun . Chen . Huisu . Measurement of continuum percolation properties of two-dimensional particulate systems comprising congruent and binary superellipses . Powder Technology . 2019 . 347 . 17–26 . 10.1016/j.powtec.2019.02.036. 104332397 .
  33. Li. Mingqi. Chen. Huisu. Lin. Jianjun. Zhang. Rongling. Liu. Lin. July 2021. Effects of the pore shape polydispersity on the percolation threshold and diffusivity of porous composites: Theoretical and numerical studies. Powder Technology. 386. 382–393. 10.1016/j.powtec.2021.03.055. 233675695. 0032-5910.
  34. Koza . Zbigniew . Piotr Brzeski . Grzegorz Kondrat . Percolation of fully penetrable disks using the three-leg cluster method . J. Phys. A: Math. Theor. . (in press) . 16 . 2023 . 165001 . 10.1088/1751-8121/acc3d0. 257524315 . free . 2023JPhA...56p5001K .
  35. Gilbert . E. N. . Random Plane Networks . J. Soc. Indust. Appl. Math. . 9 . 4 . 1961 . 533–543 . 10.1137/0109045.
  36. Xu . Wenhui . Junfeng Wang . Hao Hu . Youjin Deng . Critical polynomials in the nonplanar and continuum percolation models . Physical Review E . 2021 . 103 . 2 . 022127 . 10.1103/PhysRevE.103.022127 . 2470-0045 . 33736116 . 2010.02887 . 2021PhRvE.103b2127X . 222140792 .
  37. Tarasevich . Yuri Yu. . Andrei V. Eserkepov . Percolation thresholds for discorectangles: numerical estimation for a range of aspect ratios . Physical Review E . 1910.05072 . 2020. 101 . 2 . 022108 . 10.1103/PhysRevE.101.022108 . 32168641 . 2020PhRvE.101b2108T . 204401814 .
  38. Li . Jiantong . Mikael Östling . Precise percolation thresholds of two-dimensional random systems comprising overlapping ellipses . Physica A . 462 . 2016 . 940–950 . 10.1016/j.physa.2016.06.020. 2016PhyA..462..940L.
  39. Nguyen . Van Lien . Enrique Canessa . Finite-size scaling in two-dimensional continuum percolation models . Modern Physics Letters B . 13 . 17 . 1999 . 577–583 . 10.1142/S0217984999000737. cond-mat/9909200 . 1999MPLB...13..577N . 18560722 .
  40. Roberts . F. D. K. . A Monte Carlo Solution of a Two-Dimensional Unstructured Cluster Problem . Biometrika . 54 . 3/4 . 1967 . 625–628 . 10.2307/2335053. 2335053 . 6064024 .
  41. Xia . W. . M. F. Thorpe . Percolation properties of random ellipses . Physical Review A . 38 . 5 . 1988 . 2650–2656 . 10.1103/PhysRevA.38.2650. 1988PhRvA..38.2650X . 9900674 .
  42. Yi . Y.-B. . A. M. Sastry . Analytical approximation of the percolation threshold for overlapping ellipsoids of revolution . Proceedings of the Royal Society A . 460 . 5 . 2004 . 2353–2380 . 10.1098/rspa.2004.1279. 2004RSPSA.460.2353Y . 2475482 .
  43. Mertens . Stephan . Cristopher Moore . Continuum percolation thresholds in two dimensions . Physical Review E . 86 . 6 . 2012 . 061109 . 10.1103/PhysRevE.86.061109. 23367895 . 1209.4936 . 2012PhRvE..86f1109M . 15107275 .
  44. Baker . Don R. . Gerald Paul . Sameet Sreenivasan . H. Eugene Stanley . Continuum percolation threshold for interpenetrating squares and cubes . Physical Review E . 66 . 4 . 2002 . 046136 [5 pages] . 10.1103/PhysRevE.66.046136. 12443288 . cond-mat/0203235 . 2002PhRvE..66d6136B . 9561586 .
  45. Torquato . S. . Y. Jiao . Effect of dimensionality on the continuum percolation of overlapping hyperspheres and hypercubes. II. Simulation results and analyses . J. Chem. Phys. . 137 . 7 . 2012 . 074106 . 10.1063/1.4742750 . 22920102 . 1208.3720 . 2012JChPh.137g4106T . 13188197 .
  46. Li . Jiantong . Mikael Östling . Percolation thresholds of two-dimensional continuum systems of rectangles . Physical Review E . 88 . 1 . 2013 . 012101 . 10.1103/PhysRevE.88.012101. 23944408 . 2013PhRvE..88a2101L . 21438506 .
  47. Li . Jiantong . Shi-Li Zhang . Finite-size scaling in stick percolation . Physical Review E . 80 . 4 . 2009 . 040104(R) . 10.1103/PhysRevE.80.040104. 19905260 . 2009PhRvE..80d0104L .
  48. Tarasevich . Yuri Yu. . Andrei V. Eserkepov . 2018 . Percolation of sticks: Effect of stick alignment and length dispersity . 10.1103/PhysRevE.98.062142 . 98 . 6 . 062142 . Physical Review E . 2018PhRvE..98f2142T . 1811.06681 . 54187951 .
  49. Sasidevan . V. . 2013 . Continuum percolation of overlapping discs with a distribution of radii having a power-law tail . 1302.0085 . 10.1103/PhysRevE.88.022140 . 24032808 . 88 . 2 . 022140 . Physical Review E. 2013PhRvE..88b2140S . 24046421 .
  50. Jin . Yuliang . Patrick Charbonneau . Mapping the arrest of the random Lorentz gas onto the dynamical transition of a simple glass former . Physical Review E . 91 . 4 . 2014 . 042313 . 1409.0688. 2015PhRvE..91d2313J . 10.1103/PhysRevE.91.042313 . 25974497 . 16117644 .
  51. Lin . Jianjun . Zhang . Wulong . Chen . Huisu . Zhang . Rongling . Liu . Lin . Effect of pore characteristic on the percolation threshold and diffusivity of porous media comprising overlapping concave-shaped pores . International Journal of Heat and Mass Transfer . 2019 . 138 . 1333–1345. 10.1016/j.ijheatmasstransfer.2019.04.110 . 164424008 .
  52. Meeks . Kelsey . J. Tencer . M.L. Pantoya . Percolation of binary disk systems: Modeling and theory . Phys. Rev. E . 95 . 1 . 2017 . 012118 . 10.1103/PhysRevE.95.012118 . 28208494 . 2017PhRvE..95a2118M . free .
  53. Quintanilla . John A. . Measurement of the percolation threshold for fully penetrable disks of different radii . Phys. Rev. E . 63 . 6 . 2001 . 061108 . 10.1103/PhysRevE.63.061108 . 11415069 . 2001PhRvE..63f1108Q .
  54. Melchert . Oliver . Percolation thresholds on planar Euclidean relative-neighborhood graphs . Physical Review E . 87 . 4 . 042106 . 10.1103/PhysRevE.87.042106 . 23679372 . 2013. 2013PhRvE..87d2106M. 1301.6967. 9691279 .
  55. Becker . A. . R. M. Ziff . Percolation thresholds on two-dimensional Voronoi networks and Delaunay triangulations . Physical Review E . 80 . 4 . 041101 . 10.1103/PhysRevE.80.041101 . 19905267 . 2009. 2009PhRvE..80d1101B . 0906.4360 . 22549508 .
  56. Shante . K. S. . S. Kirkpatrick . An introduction to percolation theory . Advances in Physics . 20 . 85 . 325–357 . 10.1080/00018737100101261 . 1971. 1971AdPhy..20..325S .
  57. Norrenbrock . C. . Percolation threshold on planar Euclidean Gabriel Graphs . Journal of Physics A . 40 . 31. 9253–9258 . 2014 . 0704.2098 . 2007JPhA...40.9253P . 10.1088/1751-8113/40/31/005. 680787 .
  58. Bertin . E . J.-M. Billiot . R. Drouilhet . Continuum percolation in the Gabriel graph . Adv. Appl. Probab. . 34 . 4 . 689 . 2002 . 10.1239/aap/1037990948. 121288601 .
  59. Lepage . Thibaut . Lucie Delaby . Fausto Malvagi . Alain Mazzolo . Monte Carlo simulation of fully Markovian stochastic geometries . Progress in Nuclear Science and Technology . 2 . 743–748 . 2011 . 10.15669/pnst.2.743. free .
  60. Zhang . C. . K. De'Bell . Reformulation of the percolation problem on a quasilattice: Estimates of the percolation threshold, chemical dimension, and amplitude ratio . Phys. Rev. B . 47 . 14 . 8558–8564 . 10.1103/PhysRevB.47.8558 . 1993. 10004894 . 1993PhRvB..47.8558Z .
  61. Ziff . R. M. . F. Babalievski . Site percolation on the Penrose rhomb lattice . Physica A . 269 . 2–4 . 201–210 . 10.1016/S0378-4371(99)00166-1 . 1999. 1999PhyA..269..201Z .
  62. Lu . Jian Ping . Joseph L. Birman . Percolation and Scaling on a Quasilattice . Journal of Statistical Physics . 46 . 5/6 . 1057–1066 . 10.1007/BF01011156 . 1987. 1987JSP....46.1057L . 121645524 .
  63. Babalievski . F. . Percolation thresholds and percolation conductivities of octagonal and dodecagonal quasicrystalline lattices . Physica A . 220 . 1995 . 245–250 . 10.1016/0378-4371(95)00260-E . 1995 . 1995PhyA..220..245B .
  64. Bollobás . Béla . Oliver Riordan . The critical probability for random Voronoi percolation in the plane is 1/2 . Probab. Theory Relat. Fields . 136 . 3 . 417–468 . 10.1007/s00440-005-0490-z . 2006. math/0410336 . 15985691 .
  65. Hsu . H. P. . M. C. Huang . Percolation thresholds, critical exponents, and scaling functions on planar random lattices and their duals . Physical Review E . 60 . 6 . 6361–6370 . 10.1103/PhysRevE.60.6361 . 11970550 . 1999. 1999PhRvE..60.6361H . 8750738 .
  66. Huang . Ming-Chang . Hsiao-Ping Hsu . Percolation thresholds, critical exponents, and scaling functions on spherical random lattices . International Journal of Modern Physics C . 13 . 3 . 383–395 . 10.1142/S012918310200319X . 2002.
  67. Angel . Omer . Schramm, Oded . Uniform infinite planar triangulation . Commun. Math. Phys. . 241 . 2–3 . 191–213 . 2003 . 10.1007/s00220-003-0932-3 . math/0207153. 2003CMaPh.241..191A. 17718301 .
  68. Bernardi . Olivier . Curien, Nicolas . Miermont, Grėgory . A Boltzmann approach to percolation on random triangulations . Canadian Journal of Mathematics . 71 . 1–43 . 2019 . 1705.04064. 10.4153/CJM-2018-009-x . 6817693 .
  69. Angel . O. . Curien, Nicolas . Percolations on random maps I: Half-plane models . Annales de l'Institut Henri Poincaré, Probabilités et Statistiques . 51 . 2 . 405–431 . 2014 . 10.1214/13-AIHP583 . 1301.5311 . 2015AIHPB..51..405A. 14964345 .
  70. Zierenberg . Johannes . Niklas Fricke . Martin Marenz . F. P. Spitzner . Viktoria Blavatska . Wolfhard Janke . Percolation thresholds and fractal dimensions for square and cubic lattices with long-range correlated defects . Phys. Rev. E . 96 . 6 . 062125 . 2017 . 10.1103/PhysRevE.96.062125 . 29347311 . 1708.02296 . 2017PhRvE..96f2125Z . 22353394 .
  71. Horton. M. K.. Moram. M. A.. 2017-04-17. Alloy composition fluctuations and percolation in semiconductor alloy quantum wells. Applied Physics Letters. en. 110. 16. 162103. 10.1063/1.4980089. 2017ApPhL.110p2103H. 0003-6951.
  72. Sotta . P. . D. Long . The crossover from 2D to 3D percolation: Theory and numerical simulations . Eur. Phys. J. E . 11 . 4 . 375–388 . 10.1140/epje/i2002-10161-6 . 15011039 . 2003. 2003EPJE...11..375S . 32831742 .
  73. Gliozzi . F. . S. Lottini . M. Panero . A. Rago . Random percolation as a gauge theory . Nuclear Physics B . 719 . 3 . 2005 . 255–274 . 10.1016/j.nuclphysb.2005.04.021. cond-mat/0502339 . 2005NuPhB.719..255G . 2318/5995 . 119360708 .
  74. Yoo . Ted Y. . Jonathan Tran . Shane P. Stahlheber . Carina E. Kaainoa . Kevin Djepang . Alexander R. Small . Site percolation on lattices with low average coordination numbers . Journal of Statistical Mechanics: Theory and Experiment . 2014 . 6 . 2014 . P06014 . 1403.1676. 2014JSMTE..06..014Y . 10.1088/1742-5468/2014/06/p06014. 119290405 .
  75. Wells . A. F. . Structures Based on the 3-Connected Net 103b . Journal of Solid State Chemistry . 54 . 3 . 1984 . 378–388 . 10.1016/0022-4596(84)90169-5. 1984JSSCh..54..378W.
  76. Pant . Mihir . Don Towsley . Dirk Englund . Saikat Guha . Percolation thresholds for photonic quantum computing . Nature Communications . 2017 . 10 . 1 . 1070 . 10.1038/s41467-019-08948-x . 30842425 . 6403388 . 1701.03775.
  77. Tran . Jonathan . Ted Yoo . Shane Stahlheber . Alex Small . Percolation thresholds on 3-dimensional lattices with 3 nearest neighbors . Journal of Statistical Mechanics: Theory and Experiment . 2013 . 5 . 2013 . P05014 . 1211.6531. 2013JSMTE..05..014T . 10.1088/1742-5468/2013/05/P05014 . 119182062 .
  78. Hyde . Stephen T. . O'Keeffe, Michael . Proserpio, Davide M. . A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics . Angew. Chem. Int. Ed. . 47 . 42 . 2008 . 7996–8000 . 10.1002/anie.200801519 . 18767088.
  79. Frisch . H. L. . E. Sonnenblick . V. A. Vyssotsky . J. M. Hammersley . Critical Percolation Probabilities (Site Problem) . Physical Review . 124 . 4 . 1961 . 1021–1022 . 10.1103/PhysRev.124.1021. 1961PhRv..124.1021F .
  80. Vyssotsky . V. A. . S. B. Gordon . H. L. Frisch . J. M. Hammersley . Critical Percolation Probabilities (Bond Problem) . Physical Review . 123 . 5 . 1961 . 1566–1567 . 10.1103/PhysRev.123.1566. 1961PhRv..123.1566V .
  81. Xu . Xiao . Junfeng Wang . Jian-Ping Lv . Youjin Deng . Simultaneous analysis of three-dimensional percolation models . Frontiers of Physics . 9 . 1 . 2014 . 113–119 . 10.1007/s11467-013-0403-z . 1310.5399 . 2014FrPhy...9..113X . 119250232 .
  82. Silverman . Amihal . J. Adler. Joan Adler . Site-percolation threshold for a diamond lattice with diatomic substitution . Physical Review B . 42 . 2 . 1990 . 1369–1373 . 10.1103/PhysRevB.42.1369. 9995550 . 1990PhRvB..42.1369S .
  83. van der Marck . Steven C. . Erratum: Percolation thresholds and universal formulas [Phys. Rev. E 55, 1514 (1997)] . Phys. Rev. E . 56 . 3 . 1997 . 3732 . 10.1103/PhysRevE.56.3732.2 . 1997PhRvE..56.3732V . free .
  84. van der Marck . Steven C. . Calculation of Percolation Thresholds in High Dimensions for FCC, BCC and Diamond Lattices . International Journal of Modern Physics C . 9 . 4 . 1998 . 529–540 . 10.1142/S0129183198000431 . cond-mat/9802187 . 1998IJMPC...9..529V . 119097158 .
  85. Sykes . M. F. . J. W. Essam . Critical percolation probabilities by series method . Physical Review . 133 . 1A . 1964 . A310–A315 . 10.1103/PhysRev.133.A310 . 1964PhRv..133..310S .
  86. Sykes . M. F. . D. S. Gaunt . M. Glen . Percolation processes in three dimensions . J. Phys. A: Math. Gen. . 9 . 10 . 1976 . 1705–1712 . 10.1088/0305-4470/9/10/021 . 1976JPhA....9.1705S .
  87. van der Marck . Steven C. . Percolation thresholds of the duals of the face-centered-cubic, hexagonal-close-packed, and diamond lattices . Phys. Rev. E . 55 . 6 . 1997 . 6593–6597 . 10.1103/PhysRevE.55.6593. 1997PhRvE..55.6593V.
  88. Sur . Amit . Joel L. Lebowitz . J. Marro . M. H. Kalos. S. Kirkpatrick . Monte Carlo studies of percolation phenomena for a simple cubic lattice . Journal of Statistical Physics . 15 . 5 . 1976 . 345–353 . 10.1007/BF01020338 . 1976JSP....15..345S. 38734613 .
  89. Wang . J . Z. Zhou . W. Zhang . T. Garoni . Y. Deng . Bond and site percolation in three dimensions . Physical Review E . 87 . 5 . 2013 . 052107 . 1302.0421. 2013PhRvE..87e2107W . 10.1103/PhysRevE.87.052107 . 23767487 . 14087496 .
  90. Grassberger . P. . Numerical studies of critical percolation in three dimensions . J. Phys. A . 25 . 22 . 1992 . 5867–5888 . 10.1088/0305-4470/25/22/015. 1992JPhA...25.5867G .
  91. Acharyya . M. . D. Stauffer . Effects of Boundary Conditions on the Critical Spanning Probability . Int. J. Mod. Phys. C . 9 . 4 . 1998 . 643–647 . 10.1142/S0129183198000534. cond-mat/9805355 . 1998IJMPC...9..643A . 15684907 .
  92. Jan . N. . D. Stauffer . Random Site Percolation in Three Dimensions . Int. J. Mod. Phys. C . 9 . 4 . 1998 . 341–347 . 10.1142/S0129183198000261. 1998IJMPC...9..341J .
  93. Deng . Youjin . H. W. J. Blöte . Monte Carlo study of the site-percolation model in two and three dimensions . Physical Review E . 72 . 1 . 2005 . 016126 . 10.1103/PhysRevE.72.016126. 16090055 . 2005PhRvE..72a6126D .
  94. Ballesteros . P. N. . L. A. Fernández . V. Martín-Mayor . A. Muñoz Sudepe . G. Parisi . J. J. Ruiz-Lorenzo . Scaling corrections: site percolation and Ising model in three dimensions . Journal of Physics A . 32 . 1 . 1999 . 1–13 . 10.1088/0305-4470/32/1/004. cond-mat/9805125 . 1999JPhA...32....1B . 2787294 .
  95. Škvor . Jiří . Ivo Nezbeda . Percolation threshold parameters of fluids . Physical Review E . 79 . 4 . 2009 . 041141 . 10.1103/PhysRevE.79.041141. 19518207 . 2009PhRvE..79d1141S .
  96. Adler . Joan . Yigal Meir . Amnon Aharony . A. B. Harris . Lior Klein . Low-Concentration Series in General Dimension . Journal of Statistical Physics . 58 . 3/4 . 1990 . 511–538 . 10.1007/BF01112760. 1990JSP....58..511A . 122109020 .
  97. Lorenz . C. D. . R. M. Ziff . Precise determination of the bond percolation thresholds and finite-size scaling corrections for the sc, fcc, and bcc lattices . Physical Review E . 57 . 1 . 1998 . 230–236 . 10.1103/PhysRevE.57.230. cond-mat/9710044 . 1998PhRvE..57..230L . 119074750 .
  98. Schrenk . K. J. . N. A. M. Araújo . H. J. Herrmann . Stacked triangular lattice: percolation properties . Physical Review E . 87 . 3 . 2013 . 032123 . 1302.0484 . 10.1103/PhysRevE.87.032123. 2013PhRvE..87c2123S . 2917074 .
  99. Martins . P. . J. Plascak . Percolation on two- and three-dimensional lattices . Physical Review . 67 . 4 . 2003 . 046119 . 2003PhRvE..67d6119M . 10.1103/physreve.67.046119. 12786448 . cond-mat/0304024. 31891392 .
  100. Bradley . R. M. . P. N. Strenski . J.-M. Debierre . Surfaces of percolation clusters in three dimensions . Physical Review B . 44 . 1 . 1991 . 76–84 . 10.1103/PhysRevB.44.76. 9998221 . 1991PhRvB..44...76B .
  101. Gaunt . D. S. . M. F. Sykes . Series study of random percolation in three dimensions . J. Phys. A . 16 . 4 . 1983 . 783 . 10.1088/0305-4470/16/4/016. 1983JPhA...16..783G .
  102. Gallyamov . S. R. . S.A. Melchukov . Percolation threshold of a simple cubic lattice with fourth neighbors: the theory and numerical calculation with parallelization . Third International Conference "High Performance Computing" HPC-UA 2013 (Ukraine, Kyiv, October 7–11, 2013) . 2013 . August 23, 2019 . August 23, 2019 . https://web.archive.org/web/20190823170156/http://hpc-ua.org/hpc-ua-13/files/proceedings/24.pdf . dead .
  103. Sykes . M. F. . D. S. Gaunt . J. W. Essam . The percolation probability for the site problem on the face-centred cubic lattice . Journal of Physics A . 9 . 5 . 1976 . L43–L46 . 10.1088/0305-4470/9/5/002. 1976JPhA....9L..43S .
  104. Lorenz . C. D. . R. M. Ziff . Universality of the excess number of clusters and the crossing probability function in three-dimensional percolation . Journal of Physics A . 31 . 40 . 1998 . 8147–8157 . 10.1088/0305-4470/31/40/009. cond-mat/9806224 . 1998JPhA...31.8147L . 12493873 .
  105. Hu . Yi . Patrick Charbonneau . Percolation thresholds on high-dimensional Dn and E8-related lattices . Physical Review E . 103 . 6 . 2021 . 062115 . 10.1103/PhysRevE.103.062115 . 34271715 . 2102.09682 . 2021PhRvE.103f2115H . 231979212 .
  106. Lorenz . C. D. . R. May . R. M. Ziff . Similarity of Percolation Thresholds on the HCP and FCC Lattices . Journal of Statistical Physics . 98 . 3/4 . 2000 . 961–970 . 10.1023/A:1018648130343. 2027.42/45178 . 10950378 . free .
  107. Tahir-Kheli . Jamil . W. A. Goddard III. Chiral plaquette polaron theory of cuprate superconductivity. Physical Review B . 76 . 1 . 2007 . 014514. 10.1103/PhysRevB.76.014514. 2007PhRvB..76a4514T . 0707.3535 . 8882419 .
  108. Malarz . Krzysztof . Simple cubic random-site percolation thresholds for neighborhoods containing fourth-nearest neighbors . Phys. Rev. E . 91 . 4 . 2015 . 043301 . 10.1103/PhysRevE.91.043301 . 25974606 . 2015PhRvE..91d3301M . 1501.01586. 37943657 .
  109. Xun . Zhipeng . Robert M. Ziff . Bond percolation on simple cubic lattices with extended neighborhoods . Phys. Rev. E . 102 . 4 . 2020 . 012102 . 10.1103/PhysRevE.102.012102 . 32795057 . 2001.00349. 2020PhRvE.102a2102X . 209531616 .
  110. Xun . Zhipeng . DaPeng Hao . Robert M. Ziff . Site and bond percolation thresholds on regular lattices with compact extended-range neighborhoods in two and three dimensions . Phys. Rev. E . 105 . 2 . 2022 . 024105 . 10.1103/PhysRevE.105.024105 . 35291074 . 2111.10975 . 2022PhRvE.105b4105X . 244478657 .
  111. Xu . Fangbo . Zhiping Xu . Boris I. Yakobson . Site-Percolation Threshold of Carbon Nanotube Fibers---Fast Inspection of Percolation with Markov Stochastic Theory . Physica A . 407 . 2014 . 341–349. 10.1016/j.physa.2014.04.013 . 1401.2130. 2014PhyA..407..341X . 119267606 .
  112. Kurzawski . Ł. . K. Malarz . Simple cubic random-site percolation thresholds for complex neighbourhoods . Rep. Math. Phys. . 70 . 2 . 2012 . 163–169 . 10.1016/S0034-4877(12)60036-6 . 2012RpMP...70..163K . 1111.3254. 10.1.1.743.1726 . 119120046 .
  113. Harter . T. . Finite-size scaling analysis of percolation in three-dimensional correlated binary Markov chain random fields . Physical Review E . 72 . 2 . 2005 . 026120 . 10.1103/PhysRevE.72.026120 . 16196657 . 2005PhRvE..72b6120H . 2708506 .
  114. Gawron . T. R. . Marek Cieplak . Site percolation thresholds of the FCC lattice . Acta Physica Polonica A . 80 . 3 . 1991 . 461 . 10.12693/APhysPolA.80.461 . 1991AcPPA..80..461G . free .
  115. Sykes . M. F. . J. J. Rehr . Maureen Glen . A note on the percolation probabilities of pairs of closely similar lattices . Proc. Camb. Phil. Soc. . 76 . 1996 . 389–392 . 10.1017/S0305004100049021. 96528423 .
  116. Weber . H. . W. Paul . Penetrant diffusion in frozen polymer matrices: A finite-size scaling study of free volume percolation . Physical Review E . 54 . 4 . 1996 . 3999–4007 . 10.1103/PhysRevE.54.3999 . 9965547 . 1996PhRvE..54.3999W .
  117. Holcomb . D F.. . J. J. Rehr, Jr. . Percolation in heavily doped semiconductors* . Physical Review . 183 . 3 . 1969 . 773–776 . 10.1103/PhysRev.183.773. 1969PhRv..183..773H .
  118. Holcomb . D F. . F. Holcomb . M. Iwasawa . Clustering of randomly placed spheres . Biometrika . 59 . 1972 . 207–209 . 10.1093/biomet/59.1.207.
  119. Shante . Vinod K. S. . Scott Kirkpatrick . An introduction to percolation theory . Advances in Physics . 20 . 85 . 1971 . 325–357 . 10.1080/00018737100101261. 1971AdPhy..20..325S .
  120. Rintoul . M. D. . S. Torquato . Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model . J. Phys. A: Math. Gen. . 30 . 16 . 1997 . L585 . 10.1088/0305-4470/30/16/005. 1997JPhA...30L.585R . 10.1.1.42.4284.
  121. Consiglio . R. . R. Baker . G. Paul . H. E. Stanley . Continuum percolation of congruent overlapping spherocylinders . Physica A . 319 . 2003 . 49–55 . 10.1016/S0378-4371(02)01501-7 .
  122. Xu . Wenxiang . Xianglong Su . Yang Jiao . Continuum percolation of congruent overlapping spherocylinders . Phys. Rev. E . 93 . 3 . 2016 . 032122 . 10.1103/PhysRevE.94.032122 . 27078307 . 2016PhRvE..94c2122X .
  123. Lorenz . C. D. . R. M. Ziff . Precise determination of the critical percolation threshold for the three dimensional Swiss cheese model using a growth algorithm . J. Chem. Phys. . 114 . 8 . 2000 . 3659 . 10.1063/1.1338506 . 2001JChPh.114.3659L . 2027.42/70114 . free .
  124. Lin . Jianjun . Chen . Huisu . Xu . Wenxiang . Geometrical percolation threshold of congruent cuboidlike particles in overlapping particle systems . Physical Review E . 2018 . 98 . 1 . 012134 . 10.1103/PhysRevE.98.012134. 30110832 . 2018PhRvE..98a2134L . 52017287.
  125. Li . Mingqi. Chen. Huisu. Lin. Jianjun. January 2020. Efficient measurement of the percolation threshold for random systems of congruent overlapping ovoids. Powder Technology. 360. 598–607. 10.1016/j.powtec.2019.10.044. 208693526. 0032-5910.
  126. Li . Mingqi. Chen. Huisu. Lin. Jianjun . April 2020. Numerical study for the percolation threshold and transport properties of porous composites comprising non-centrosymmetrical superovoidal pores . Computer Methods in Applied Mechanics and Engineering. 361. 112815. 10.1016/j.cma.2019.112815. 2020CMAME.361k2815L . 213152892. 0045-7825.
  127. Garboczi . E. J. . K. A. Snyder . J. F. Douglas . Geometrical percolation threshold of overlapping ellipsoids . Phys. Rev. E . 52 . 1 . 1995 . 819–827 . 1995PhRvE..52..819G . 10.1103/PhysRevE.52.819 . 9963485 .
  128. Yi . Y.-B. . A. M. Sastry . Analytical approximation of the percolation threshold for overlapping ellipsoids of revolution . Proc. R. Soc. Lond. A . 460 . 2048 . 2004 . 2353–2380 . 10.1098/rspa.2004.1279 . 2004RSPSA.460.2353Y . 2475482 .
  129. Hyytiä . E. . J. Virtamo . P. Lassila . J. Ott . Continuum percolation threshold for permeable aligned cylinders and opportunistic networking . IEEE Communications Letters . 16 . 7 . 2012 . 1064–1067 . 10.1109/LCOMM.2012.051512.120497 . 1056865 .
  130. Torquato . S. . Y. Jiao . Effect of Dimensionality on the Percolation Threshold of Overlapping Nonspherical Hyperparticles . Physical Review E . 87 . 2 . 2012 . 1210.0134 . 022111 . 10.1103/PhysRevE.87.022111. 23496464 . 2013PhRvE..87b2111T . 11417012 .
  131. Yi . Y. B. . E. Tawerghi . Geometric percolation thresholds of interpenetrating plates in three-dimensional space . Physical Review E . 79 . 4 . 2009 . 041134 . 10.1103/PhysRevE.79.041134 . 19518200 . 2009PhRvE..79d1134Y .
  132. Ziff . R. M. . Salvatore Torquato . Percolation of disordered jammed sphere packings . Journal of Physics A: Mathematical and Theoretical . 50 . 8 . 2016 . 085001 . 1611.00279. 2017JPhA...50h5001Z. 10.1088/1751-8121/aa5664. 53003822 .
  133. Lin . Jianjun . Chen . Huisu . Continuum percolation of porous media via random packing of overlapping cube-like particles . Theoretical & Applied Mechanics Letters . 2018 . 8 . 5 . 299–303 . 10.1016/j.taml.2018.05.007. free .
  134. Lin . Jianjun . Chen . Huisu . Effect of particle morphologies on the percolation of particulate porous media: A study of superballs . Powder Technology . 2018 . 335 . 388–400 . 10.1016/j.powtec.2018.05.015. 103471554 .
  135. Kertesz . Janos . Journal de Physique Lettres . Percolation of holes between overlapping spheres: Monte Carlo calculation of the critical volume fraction . 42 . 17 . 1981 . L393– L395 . 10.1051/jphyslet:019810042017039300. 122115573 .
  136. Elam . W. T. . A. R. Kerstein . J. J. Rehr . Phys. Rev. Lett. . Critical properties of the void percolation problem for spheres . 52 . 7 . 1984 . 1516–1519 . 10.1103/PhysRevLett.52.1516. 1984PhRvL..52.1516E .
  137. van der Marck . Steven C. . Network approach to void percolation in a pack of unequal spheres . Physical Review Letters . 77 . 9 . 1996 . 1785–1788 . 10.1103/PhysRevLett.77.1785 . 10063171 . 1996PhRvL..77.1785V.
  138. Rintoul . M. D. . Precise determination of the void percolation threshold for two distributions of overlapping spheres . Physical Review E . 62 . 6 . 2000 . 68–72 . 10.1103/PhysRevE.62.68 . 11088435 . 2000PhRvE..62...68R .
  139. Yi . Y. B. . Void percolation and conduction of overlapping ellipsoids . Physical Review E . 74 . 3 . 2006 . 031112 . 10.1103/PhysRevE.74.031112. 17025599 . 2006PhRvE..74c1112Y .
  140. Höfling . F. . T. Munk . E. Frey . T. Franosch . Critical dynamics of ballistic and Brownian particles in a heterogeneous environment . J. Chem. Phys. . 128 . 16 . 2008 . 164517 . 10.1063/1.2901170. 18447469 . 2008JChPh.128p4517H . 0712.2313 . 25509814 .
  141. Priour, Jr. . D.J. . Percolation through voids around overlapping spheres: A dynamically based finite-size scaling analysis . Phys. Rev. E . 89 . 1 . 2014 . 012148 . 10.1103/PhysRevE.89.012148 . 24580213 . 2014PhRvE..89a2148P . 1208.0328. 20349307 .
  142. Priour, Jr. . D. J. . N. J. McGuigan . Percolation through voids around randomly oriented faceted inclusions . 2017 . 1712.10241. cond-mat.stat-mech .
  143. Priour, Jr. . D. J. . N. J. McGuigan . Percolation through voids around randomly oriented polyhedra and axially symmetric grains . 2018 . Phys. Rev. Lett. . 121 . 22 . 225701 . 10.1103/PhysRevLett.121.225701 . 30547614 . 2018PhRvL.121v5701P . 1801.09970 . 119185480 .
  144. Yi . Y. B. . K. Esmail . Computational measurement of void percolation thresholds of oblate particles and thin plate composites . J. Appl. Phys. . 111 . 12 . 2012 . 124903–124903–6 . 10.1063/1.4730333. 2012JAP...111l4903Y .
  145. Charbonneau . Benoit . Patrick Charbonneau . Yi Hu . Zhen Yang . High-dimensional percolation criticality and hints of mean-field-like caging of the random Lorentz gas . 2021 . Phys. Rev. E . 2 . 104 . 024137 . 10.1103/PhysRevE.104.024137 . 34525662 . 2105.04711. 2021PhRvE.104b4137C . 234357912 .
  146. Powell . M. J. . Site percolation in randomly packed spheres . Physical Review B . 20 . 10 . 1979 . 4194–4198 . 10.1103/PhysRevB.20.4194. 1979PhRvB..20.4194P .
  147. Clerc . J. P. . G. Giraud . S. Alexander . E. Guyon . Conductivity of a mixture of conducting and insulating grains: Dimensionality effects . Physical Review B . 22 . 5 . 1979 . 2489–2494 . 10.1103/PhysRevB.22.2489.
  148. C. Larmier . E. Dumonteil . F. Malvagi . A. Mazzolo . A. Zoia . Finite-size effects and percolation properties of Poisson geometries . Physical Review E . 94 . 1 . 012130 . 1605.04550 . 2016 . 10.1103/PhysRevE.94.012130 . 27575099 . 2016PhRvE..94a2130L. 19361619 .
  149. Zakalyukin . R. M. . V. A. Chizhikov . Calculations of the Percolation Thresholds of a Three-Dimensional (Icosahedral) Penrose Tiling by the Cubic Approximant Method . Crystallography Reports . 50 . 6 . 2005 . 938–948 . 10.1134/1.2132400 . 2005CryRp..50..938Z . 94290876 .
  150. Jerauld . G. R. . L. E. Scriven. H. T. Davis . Percolation and conduction on the 3D Voronoi and regular networks: a second case study in topological disorder . J. Phys. C: Solid State Phys. . 17 . 19 . 1984 . 3429–3439 . 10.1088/0022-3719/17/19/017. 1984JPhC...17.3429J .
  151. Kantor . Yacov . Three-dimensional percolation with removed lines of sites . Phys. Rev. B . 33 . 5 . 1986 . 3522–3525 . 10.1103/PhysRevB.33.3522. 9938740 . 1986PhRvB..33.3522K .
  152. Schrenk . K. J. . M. R. Hilário. V. Sidoravicius. N. A. M. Araújo. H. J. Herrmann. M. Thielmann. A. Teixeira . Critical Fragmentation Properties of Random Drilling: How Many Holes Need to Be Drilled to Collapse a Wooden Cube? . Phys. Rev. Lett. . 116 . 5 . 2016 . 055701 . 1601.03534 . 10.1103/PhysRevLett.116.055701 . 26894717 . 2016PhRvL.116e5701S. 3145131 .
  153. Grassberger . P. . Some remarks on drilling percolation . Phys. Rev. E . 95 . 1 . 2017 . 010103 . 1611.07939 . 10.1103/PhysRevE.95.010103. 28208497 . 12476714 .
  154. Szczygieł . Bartłomiej . Kamil Kwiatkowski . Maciej Lewenstein . Gerald John Lapeyre, Jr. . Jan Wehr. Percolation thresholds for discrete-continuous models with nonuniform probabilities of bond formation . Phys. Rev. E . 93 . 2 . 2016 . 022127 . 1509.07401 . 10.1103/PhysRevE.93.022127 . 26986308 . 2016PhRvE..93b2127S . 18110437 .
  155. Abete . T. . A. de Candia . D. Lairez . A. Coniglio. Percolation Model for Enzyme Gel Degradation . Phys. Rev. Lett. . 93 . 2004 . 228301 . cond-mat/0402551 . 10.1103/PhysRevLett.93.228301 .
  156. Kirkpatrick . Scott . Percolation phenomena in higher dimensions: Approach to the mean-field limit . Physical Review Letters . 36 . 2 . 1976 . 69–72 . 10.1103/PhysRevLett.36.69. 1976PhRvL..36...69K .
  157. Grassberger . Peter . Critical percolation in high dimensions . Physical Review E . 67 . 3 . 2003 . 4 . 10.1103/PhysRevE.67.036101 . 12689126 . cond-mat/0202144 . 2003PhRvE..67c6101G . 43707822 .
  158. Paul . Gerald . Robert M. Ziff . H. Eugene Stanley . Percolation threshold, Fisher exponent, and shortest path exponent for four and five dimensions . Physical Review E . 64 . 2 . 2001 . 8 . 10.1103/PhysRevE.64.026115 . 11497659 . cond-mat/0101136 . 2001PhRvE..64b6115P . 18271196 .
  159. Ballesteros . H. G. . L. A. Fernández . V. Martín-Mayor . A. Muñoz Sudupe . G. Parisi . J. J. Ruiz-Lorenzo . Measures of critical exponents in the four dimensional site percolation . Phys. Lett. B . 400 . 3–4 . 1997 . 346–351 . 10.1016/S0370-2693(97)00337-7 . hep-lat/9612024 . 1997PhLB..400..346B . 10242417 .
  160. Kotwica . M. . P. Gronek . K. Malarz . Efficient space virtualisation for Hoshen–Kopelman algorithm . International Journal of Modern Physics C . 30 . 1950055–1950099 . 1803.09504 . 2019 . 8 . 10.1142/S0129183119500554 . 2019IJMPC..3050055K . 4418563 .
  161. Dammer . Stephan M . Haye Hinrichsen . Spreading with immunization in high dimensions . Journal of Statistical Mechanics: Theory and Experiment . 2004 . 7 . 2004 . P07011 . 10.1088/1742-5468/2004/07/P07011 . cond-mat/0405577 . 2004JSMTE..07..011D . 118981083 .
  162. Harris . A. B. . Fisch . R. . 1977 . Critical Behavior of Random Resistor Networks . Physical Review Letters . 38 . 15 . 796–799 . 10.1103/PhysRevLett.38.796. 1977PhRvL..38..796H .
  163. Stauffer . Dietrich . Robert M. Ziff . Reexamination of Seven-Dimensional Site Percolation Thresholds . International Journal of Modern Physics C . 11 . 1 . 1999 . 205–209 . 10.1142/S0129183100000183 . cond-mat/9911090 . 2000IJMPC..11..205S . 119362011 .
  164. Koza . Zbigniew . Jakub Poła . From discrete to continuous percolation in dimensions 3 to 7 . Journal of Statistical Mechanics: Theory and Experiment . 2016 . 10 . 2016 . 103206 . 10.1088/1742-5468/2016/10/103206. 1606.08050. 2016JSMTE..10.3206K. 118580056 .
  165. Adler . Joan . Yigal Meir . Amnon Aharony . A. B. Harris . Series Study of Percolation Moments in General Dimension . Physical Review B . 41 . 13 . 1990 . 9183–9206 . 10.1103/PhysRevB.41.9183. 9993262 . 1990PhRvB..41.9183A .
  166. Mertens . Stephan . Christopher Moore . Percolation Thresholds and Fisher Exponents in Hypercubic Lattices . Phys. Rev. E . 98 . 2 . 022120 . 2018 . 1806.08067. 10.1103/PhysRevE.98.022120 . 30253462 . 2018PhRvE..98b2120M . 52821851 .
  167. Gaunt . D. S. . Sykes . M. F. . Ruskin . Heather . Percolation processes in d-dimensions . J. Phys. A: Math. Gen. . 1976 . 9 . 11 . 1899–1911 . 10.1088/0305-4470/9/11/015 . 1976JPhA....9.1899G.
  168. Gaunt . D. S. . Ruskin . Heather . Bond percolation processes in d-dimensions . J. Phys. A: Math. Gen. . 1978 . 11 . 7 . 1369 . 10.1088/0305-4470/11/7/025. 1978JPhA...11.1369G.
  169. Mertens . Stephan . Moore . Christopher . Series Expansion of Critical Densities for Percolation on ℤd . J. Phys. A: Math. Theor. . 51 . 47 . 475001 . 2018 . 1805.02701 . 10.1088/1751-8121/aae65c . 119399128.
  170. van der Marck . Steven C. . Site percolation and random walks on d-dimensional Kagome lattices . Journal of Physics A . 31 . 15 . 1998 . 3449–3460 . 10.1088/0305-4470/31/15/010 . cond-mat/9801112 . 1998JPhA...31.3449V . 18989583 .
  171. Xun . Zhipeng . Precise bond percolation thresholds on several four-dimensional lattices . Physical Review Research . 2 . 1 . 2020 . 013067 . 10.1103/PhysRevResearch.2.013067. 2020PhRvR...2a3067X . 1910.11408 . 204915841 .
  172. Zhao . Pengyu . Jinhong Yan . Zhipeng Xun . Dapeng Hao . Robert M. Ziff . Site and bond percolation on four-dimensional simple hypercubic lattices with extended neighborhoods . Journal of Statistical Mechanics: Theory and Experiment . 2022 . 3 . 2022 . 033202 . 10.1088/1742-5468/ac52a8 . 2109.11195 . 2022JSMTE2022c3202Z . 237605083 .
  173. Löbl . Matthias C. . Loss-tolerant architecture for quantum computing with quantum emitters . Quantum . 8 . 1302 . 2024 . 10.22331/q-2024-03-28-1302 . 2304.03796 .
  174. Schulman. L. S.. 1983. Long range percolation in one dimension. Journal of Physics A: Mathematical and General. en. 16. 17. L639–L641. 10.1088/0305-4470/16/17/001. 0305-4470. 1983JPhA...16L.639S.
  175. Aizenman. M.. Newman. C. M.. 1986-12-01. Discontinuity of the percolation density in one dimensional 1/x−y2 percolation models. Communications in Mathematical Physics. en. 107. 4. 611–647. 10.1007/BF01205489. 0010-3616. 1986CMaPh.107..611A. 117904292.
  176. Gori. G.. Michelangeli. M.. Defenu. N.. Trombettoni. A. . 2017. One-dimensional long-range percolation: A numerical study. Physical Review E . 96. 1. 012108. 29347133. 10.1103/physreve.96.012108. 1610.00200. 9926800 . 2017PhRvE..96a2108G.
  177. Lopez . Jorge H. . J. M. Schwarz . Constraint percolation on hyperbolic lattices . Phys. Rev. E . 96 . 5 . 052108 . 10.1103/PhysRevE.96.052108 . 29347694 . 2017 . 1512.05404. 2017PhRvE..96e2108L . 44770310 .
  178. Baek . S.K. . Petter Minnhagen . Beom Jun Kim . Percolation on hyperbolic lattices . Phys. Rev. E . 79 . 1 . 011124 . 10.1103/PhysRevE.79.011124 . 2009 . 19257018. 2009PhRvE..79a1124B . 0901.0483 . 29468086 .
  179. Mertens . Stephan . Cristopher Moore . Percolation thresholds in hyperbolic lattices . Phys. Rev. E . 96 . 4 . 042116 . 10.1103/PhysRevE.96.042116 . 29347529 . 2017 . 1708.05876. 2017PhRvE..96d2116M . 39025690 .
  180. Gu . Hang . Robert M. Ziff . Crossing on hyperbolic lattices . Phys. Rev. E . 85 . 5 . 051141 . 10.1103/PhysRevE.85.051141 . 23004737 . 2012. 2012PhRvE..85e1141G. 1111.5626. 7141649 .
  181. Minnhagen . Petter . Seung Ki Baek . Analytic results for the percolation transitions of the enhanced binary tree . Phys. Rev. E . 82 . 1 . 011113 . 10.1103/PhysRevE.82.011113 . 20866571 . 2010. 1003.6012. 2010PhRvE..82a1113M. 21018113 .
  182. Nogawa . Tomoaki . Takehisa Hasegawa . Monte Carlo simulation study of the two-stage percolation transition in enhanced binary trees . J. Phys. A: Math. Theor. . 42 . 14 . 145001 . 10.1088/1751-8113/42/14/145001 . 2009. 2009JPhA...42n5001N . 0810.1602 . 118367190 .
  183. Boettcher . Stefan . Jessica L. Cook . Robert M. Ziff . Patchy percolation on a hierarchical network with small-world bonds . Phys. Rev. E . 80 . 4 . 041115 . 10.1103/PhysRevE.80.041115 . 19905281 . 2009. 2009PhRvE..80d1115B . 0907.2717 . 119265110 .
  184. Kozáková . Iva . Critical percolation of virtually free groups and other tree-like graphs . Annals of Probability . 37 . 6 . 2262–2296 . 10.1214/09-AOP458 . 2009. 0801.4153 .
  185. Jensen . Iwan . § . Anthony J. Guttmann . Series expansions of the percolation probability for directed square and honeycomb lattices . J. Phys. A: Math. Gen. . 28 . 17 . 1995 . 4813–4833 . 10.1088/0305-4470/28/17/015 . cond-mat/9509121 . 1995JPhA...28.4813J . 118993303 .
  186. Essam . J. W. . A. J. Guttmann . K. De'Bell . On two-dimensional directed percolation . J. Phys. A . 21 . 19 . 1988 . 3815–3832 . 10.1088/0305-4470/21/19/018 . 1988JPhA...21.3815E.
  187. Lübeck . S. . R. D. Willmann . Universal scaling behaviour of directed percolation and the pair contact process in an external field . J. Phys. A . 35 . 48 . 2002 . 10205 . 10.1088/0305-4470/35/48/301. cond-mat/0210403 . 2002JPhA...3510205L . 11831269 .
  188. Jensen . Iwan . Low-density series expansions for directed percolation: I. A new efficient algorithm with applications to the square lattice . J. Phys. A . 32 . 28 . 1999 . 5233–5249 . 10.1088/0305-4470/32/28/304 . cond-mat/9906036 . 1999JPhA...32.5233J . 2681356 .
  189. Jensen . Iwan . Low-density series expansions for directed percolation: III. Some two-dimensional lattices . J. Phys. A: Math. Gen. . 37 . 4 . 2004 . 6899–6915 . 10.1088/0305-4470/37/27/003 . cond-mat/0405504. 2004JPhA...37.6899J . 10.1.1.700.2691 . 119326380 .
  190. Wang . Junfeng . Zongzheng Zhou . Qingquan Liu . Timothy M. Garoni . Youjin Deng . A high-precision Monte Carlo study of directed percolation in (d + 1) dimensions . 1201.3006 . 10.1103/PhysRevE.88.042102 . 24229111 . 88 . 4 . 042102 . Physical Review E. 2013PhRvE..88d2102W . 2013 . 43011467 .
  191. Essam . John . K. De'Bell . J. Adler . Joan Adler . F. M. Bhatti . Analysis of extended series for bond percolation on the directed square lattice . Physical Review B . 33 . 2 . 1986 . 1982–1986 . 10.1103/PhysRevB.33.1982. 9938508 . 1986PhRvB..33.1982E .
  192. Baxter . R. J. . A. J. Guttmann . Series expansion of the percolation probability for the directed square lattice . J. Phys. A . 21 . 15 . 1988 . 3193–3204 . 10.1088/0305-4470/21/15/008. 1988JPhA...21.3193B .
  193. Jensen . Iwan . Low-density series expansions for directed percolation on square and triangular lattices . J. Phys. A . 29 . 22 . 1996 . 7013–7040 . 10.1088/0305-4470/29/22/007. 1996JPhA...29.7013J . 121332666 .
  194. Grassberger . P. . Local persistence in directed percolation . Journal of Statistical Mechanics: Theory and Experiment . 2009 . 8 . 2009 . P08021 . 10.1088/1742-5468/2009/08/P08021 . 2009JSMTE..08..021G . 0907.4021 . 119236556 .
  195. Perlsman . E. . S. Havlin . Method to estimate critical exponents using numerical studies . Europhys. Lett. . 58 . 2 . 2002 . 176–181 . 10.1209/epl/i2002-00621-7. 2002EL.....58..176P . 67818664 .
  196. Grassberger . P. . Y.-C. Zhang . "Self-organized" formulation of standard percolation phenomena . Physica A . 224 . 1 . 1996 . 169–179 . 10.1016/0378-4371(95)00321-5. 1996PhyA..224..169G .
  197. Adler . Joan . Joan Adler . J. Berger . M. A. M. S. Duarte . Y. Meir . Directed percolation in 3+1 dimensions . Physical Review B . 37 . 13 . 1988 . 7529–7533 . 10.1103/PhysRevB.37.7529. 9944046 . 1988PhRvB..37.7529A .
  198. Blease . J. . Series expansions for the directed-bond percolation problem . J. Phys. C: Solid State Phys. . 10 . 7 . 1977 . 917–924 . 10.1088/0022-3719/10/7/003. 1977JPhC...10..917B.
  199. Grassberger . Peter . Logarithmic corrections in (4 + 1)-dimensional directed percolation . Physical Review E . 79 . 5 . 2009 . 052104 . 10.1103/PhysRevE.79.052104. 19518501 . 2009PhRvE..79e2104G . 0904.0804 . 23876626 .
  200. Lübeck . S. . R. D. Willmann . Universal scaling behavior of directed percolation around the upper critical dimension . J. Stat. Phys. . 115 . 5–6 . 2004 . 1231–1250 . 10.1023/B:JOSS.0000028059.24904.3b. cond-mat/0401395 . 2004JSP...115.1231L . 10.1.1.310.8700 . 16267627 .
  201. Soares . Danyel J. B. . José S Andrade Jr . Hans J. Herrmann . Precise calculation of the threshold of various directed percolation models on a square lattice . J. Phys. A: Math. Gen. . 38 . 21 . 2006 . L413–L415 . 10.1088/0305-4470/38/21/L06 . cond-mat/0503408 .
  202. Wu . F. Y. . Critical frontier of the Potts and percolation models on triangular-type and kagome-type lattices I: Closed-form expressions . Physical Review E . 81 . 6 . 2010 . 061110 . 10.1103/PhysRevE.81.061110 . 20866381 . 0911.2514. 2010PhRvE..81f1110W . 31590247 .
  203. Damavandi . Ojan Khatib . Robert M. Ziff . Percolation on hypergraphs with four-edges . J. Phys. A: Math. Theor. . 48 . 40 . 2015 . 405004 . 10.1088/1751-8113/48/40/405004 . 1506.06125. 2015JPhA...48N5004K . 118481075 .
  204. Wu . F. Y. . New Critical Frontiers for the Potts and Percolation Models . Physical Review Letters . 96 . 9 . 2006 . 090602 . 10.1103/PhysRevLett.96.090602. cond-mat/0601150 . 2006PhRvL..96i0602W . 16606250. 10.1.1.241.6346 . 15182833 .
  205. Ziff . R. M. . C. R. Scullard . J. C. Wierman . M. R. A. Sedlock . The critical manifolds of inhomogeneous bond percolation on bow-tie and checkerboard lattices . Journal of Physics A . 45 . 49 . 2012 . 494005 . 10.1088/1751-8113/45/49/494005 . 1210.6609 . 2012JPhA...45W4005Z . 2121370 .