Peptidoglycan recognition protein explained

Peptidoglycan recognition proteins (PGRPs) are a group of highly conserved pattern recognition receptors with at least one peptidoglycan recognition domain capable of recognizing the peptidoglycan component of the cell wall of bacteria. They are present in insects, mollusks, echinoderms and chordates. The mechanism of action of PGRPs varies between taxa. In insects, PGRPs kill bacteria indirectly by activating one of four unique effector pathways: prophenoloxidase cascade, Toll pathway, IMD pathway, and induction of phagocytosis.[1] [2] In mammals, PGRPs either kill bacteria directly by interacting with their cell wall or outer membrane, or hydrolyze peptidoglycan. They also modulate inflammation and microbiome and interact with host receptors.

Discovery

The first PGRP was discovered in 1996 by Masaaki Ashida and coworkers, who purified a 19 kDa protein present in the hemolymph and cuticle of a silkworm (Bombyx mori), and named it Peptidoglycan Recognition Protein, because it specifically bound peptidoglycan and activated the prophenoloxidase cascade.[3] In 1998 Håkan Steiner and coworkers, using a differential display screen, identified and cloned a PGRP ortholog in a moth (Trichoplusia ni) and then discovered and cloned mouse and human PGRP orthologs,[4] thus showing that PGRPs are highly conserved from insects to mammals. Also in 1998, Sergei Kiselev and coworkers independently discovered and cloned a protein from a mouse adenocarcinoma with the same sequence as PGRP, which they named Tag7.[5] In 1999 Masanori Ochiai and Masaaki Ashida cloned the silkworm (B. mori) PGRP.[6]

In 2000, based on the available sequence of the fruit fly (Drosophila melanogaster) genome, Dan Hultmark and coworkers discovered a family of 12 highly diversified PGRP genes in Drosophila,[7] which they classified into short (S) and long (L) forms based on the size of their transcripts. By homology searches of available sequences, they also predicted the presence of a long form of human and mouse PGRP (PGRP-L).

In 2001, Roman Dziarski and coworkers discovered and cloned three human PGRPs, named PGRP-L, PGRP-Iα, and PGRP-Iβ (for long and intermediate size transcripts).[8] They established that human genome codes for a family of 4 PGRPs: PGRP-S (short PGRP) and PGRP-L, PGRP-Iα, and PGRP-Iβ. Subsequently, the Human Genome Organization Gene Nomenclature Committee changed the gene symbols of PGRP-S, PGRP-L, PGRP-Iα, and PGRP-Iβ to PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4, respectively, and this nomenclature is currently also used for other mammalian PGRPs. Sergei Kiselev and coworkers also independently cloned mouse PGLYRP2 (TagL).[9] [10] Thereafter, PGRPs have been identified throughout the animal kingdom, although lower metazoa (e.g., the nematode Caenorhabditis elegans) and plants do not have PGRPs.

In 2003, Byung-Ha Oh and coworkers crystalized PGRP-LB from Drosophila and solved its structure.[11]

Types

Insects generate up to 19 alternatively spliced PGRPs, classified into long (L) and short (S) forms. For instance, the fruit fly (D. melanogaster) has 13 PGRP genes, whose transcripts are alternatively spliced into 19 proteins, while the mosquito (Anopheles gambiae) has 7 PGRP genes, with 9 splice variants.[12] Mammals have up to four PGRPs, all of which are secreted. These are peptidoglycan recognition protein 1 (PGLYRP1), peptidoglycan recognition protein 2 (PGLYRP2), peptidoglycan recognition protein 3 (PGLYRP3) and peptidoglycan recognition protein 4 (PGLYRP4).

Structure

PGRPs contain at least one C-terminal peptidoglycan recognition domain (PGRP domain), which is about 165 amino acids long. This peptidoglycan-binding type 2 amidase domain is homologous to bacteriophage and bacterial type 2 amidases.[13]

PGRP domain has three peripheral α-helices and several central β-strands that form a peptidoglycan-binding groove on the front face of the molecule, whereas the back of the molecule has a PGRP-specific segment, which is often hydrophobic, diverse among various PGRPs, and not present in bacteriophage amidases.[14] [15]

Invertebrate PGRPs can be small secreted proteins (e.g., PGRP-SB, -SA, -SD, and -LB in Drosophila), larger transmembrane proteins (e.g., PGRP-LA, -LC, and -LF in Drosophila), or intracellular proteins (e.g., PGRP-LEfl in Drosophila). They usually have one C-terminal PGRP domain, with few exceptions, such as Drosophila PGRP-LF, which has two PGRP domains. Mammalian PGRPs are secreted proteins that typically form dimers and contain either one PGRP domain (e.g., human PGLYRP1 and PGLYRP2) or two PGRP domains (e.g., human PGLYRP3 and PGLYRP4).[16] [17] [18]

Functions

Peptidoglycan binding

PGRPs bind peptidoglycan, the main component of bacterial cell wall. Peptidoglycan is a polymer of β(1-4)-linked N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) cross-linked by short peptides composed of alternating L- and D-amino acids. MurNAc-tripeptide is the minimum fragment of peptidoglycan that binds to PGRPs and MurNAc-tetrtapeptides and MurNAc-pentapeptides bind with higher affinity.[19] Peptidoglycan binding usually induces a change in the structure of PGRP or interaction with another PGRP molecule that locks MurNAc-peptide in the binding grove. Some PGRPs can discriminate between different amino acids present in the peptide part of peptidoglycan, especially between the amino acid in the third position of peptidoglycan peptide, which is usually L-lysine in Gram-positive cocci or meso-diaminopimelic acid (m-DAP) in Gram-negative bacteria and Gram-positive bacilli. Some PGRPs can also discriminate between MurNAc and its anhydro form.[20]

Functions in insects

PGRPs are the main sensors of bacteria in insects and the main components of their antimicrobial defenses. PGRPs activate signaling cascades that induce production of antimicrobial peptides and other immune effectors. Soluble PGRPs (e.g. PGRP-SA and PGRP-SD in Drosophila) detect L-lysine-containing peptidoglycan and activate a proteolytic cascade that generates an endogenous ligand Spätzle that activates cell-surface Toll-1 receptor. Toll-1 in turn triggers a signal transduction cascade that results in production of antimicrobial peptides primarily active against Gram-positive bacteria and fungi.[21] [22] [23] [24]

Transmembrane PGRPs (e.g., Drosophila PGRP-LC) and intracellular PGRPs (e.g., Drosophila PGRP-LE) function as receptors – they detect m-DAP-containing peptidoglycan and activate IMD (immunodeficiency) signal transduction pathway that induces production of antimicrobial peptides active primarily against Gram-negative bacteria.[25] [26] [27] This activation of IMD pathway also induces production of dual oxidase, which generates antimicrobial reactive oxygen species.[28]

Some insect PGRPs (e.g., Drosophila PGRP-SA and -LE, and B. mori PGRP-S) activate the prophenoloxidase cascade, which results in the formation of melanin, reactive oxygen species, and other antimicrobial compounds.[29] [30]

Several small insect PGRPs (e.g., Drosophila PGRP-SB, -SC, and -LB) are peptidoglycan hydrolases (N-acetylmuramoyl-L-alanine amidases) that hydrolyzes the amide bond between the MurNAc and L-Ala (the first amino acid in the stem peptide).[31] These amidases act as peptidoglycan scavengers because they render the resulting peptidoglycan fragments unable to bind to PGRP. They abolish cell-activating capacity of peptidoglycan and limit systemic uptake of peptidoglycan from the bacteria-laden intestinal tract and down-regulate or prevent over-activation of host defense pathways.[32] [33] Some of these amidases are also directly bactericidal, which further defends the host against infections and helps to control the numbers of commensal bacteria.[34] [35]

Some other insect PGRPs (e.g., Drosophila PGRP-LF) do not bind peptidoglycan and lack intracellular signaling domain – they complex with PGRP-LC and function to down-regulate activation of the IMD pathway.[36] [37]

Functions in other invertebrates

PGRPs are present and constitutively expressed or induced by bacteria in most invertebrates, including worms,[38] snails,[39] oysters,[40] [41] scallops,[42] [43] squid,[44] and starfish.[45] These PGRPs are confirmed or predicted amidases and some have antibacterial activity. They likely defend the hosts against infections or regulate colonization by certain commensal bacteria, such as Vibrio fischeri in the light organ of Hawaiian bobtail squid, Euprymna scolopes.[46] [47]

Expression and functions in lower vertebrates

Early fish-like chordates, amphioxi (lancelets), have extensive innate immune system (but no adaptive immunity) and have multiple PGRP genes – e.g., 18 PGRP genes in the Florida lancelet (Branchiostoma floridae), all of which are predicted peptidoglycan-hydrolyzing amidases and at least one is bactericidal.[48]

Fish, such as zebrafish (Danio rerio), typically have 4 PGRP genes,[49] but they are not all orthologous to mammalian PGLYRPs and different species may have multiple PGRP splice variants.[50] [51] [52] [53] They are constitutively expressed in many tissues of adult fish, such as liver, gills, intestine, pancreas, spleen, and skin, and bacteria can increase their expression. PGRPs are also highly expressed in developing oocytes and in eggs (e.g., zebrafish PGLYRP2 and PGLYRP5). These PGRPs have both peptidoglycan-hydrolyzing amidase activity and are directly bactericidal to both Gram-positive and Gram-negative bacteria and protect eggs and developing embryos from bacterial infections. They may also regulate several signaling pathways.[54] [55]

Amphibian PGRPs are also proven or predicted amidases and likely have similar functions to fish PGRPs.

Expression in mammals

All four mammalian PGRPs are secreted proteins.[56] [57]

PGLYRP1 (peptidoglycan recognition protein 1) has the highest level of expression of all mammalian PGRPs. PGLYRP1 is highly constitutively expressed in the bone marrow and in the granules of neutrophils and eosinophils, and also in activated macrophages, lactating mammary gland, and intestinal Peyer's patches' microfold (M) cells, and to a much lesser extent in epithelial cells in the eye, mouth, and respiratory and intestinal tracts.[58] [59] [60] [61] [62] [63]

PGLYRP2 (peptidoglycan recognition protein 2) is constitutively expressed in the liver, from where it is secreted into the blood.[64] [65] Liver PGLYRP2 and earlier identified serum N-acetylmuramoyl-L-alanine amidase are the same protein encoded by the PGLYRP2 gene.[66] Bacteria and cytokines induce low level of PGLYRP2 expression in the skin and gastrointestinal epithelial cells,[67] [68] intestinal intraepithelial T lymphocytes, dendritic cells, NK (natural killer) cells, and inflammatory macrophages.[69] [70] Some mammals, e.g. pigs, express multiple splice forms of PGLYRP2 with differential expression.[71]

PGLYRP3 (peptidoglycan recognition protein 3) and PGLYRP4 (peptidoglycan recognition protein 4) are constitutively expressed in the skin, in the eye, and in mucous membranes in the tongue, throat, and esophagus, and at a much lower level in the remaining parts of the intestinal tract.[72] [73] PGLYRP4 is also expressed in the salivary glands and mucus-secreting glands in the throat. Bacteria and their products increase expression of PGLYRP3 and PGLYRP4 in keratinocytes and oral epithelial cells. When expressed in the same cells, PGLYRP3 and PGLYRP4 form disulfide-linked heterodimers.

Mouse PGLYRP1, PGLYRP2, PGLYRP3, and PGLYRP4 are also differentially expressed in the developing brain and this expression is influenced by the intestinal microbiome.[74] Expression of PGLYRP1 is also induced in rat brain by sleep deprivation[75] and in mouse brain by ischemia.[76]

Functions in mammals

Human PGLYRP1, PGLYRP3, and PGLYRP4 are directly bactericidal for both Gram-positive and Gram-negative bacteria[77] [78] [79] [80] [81] [82] [83] [84] and a spirochete Borrelia burgdorferi.[85] Mouse[86] [87] and bovine[88] PGLYRP1 also have antibacterial activity, and bovine PGLYRP1 has also antifungal activity. These human PGRPs kill bacteria by simultaneously inducing three synergistic stress responses: oxidative stress, thiol stress, and metal stress.[89] Bacterial killing by these PGRPs does not involve cell membrane permeabilization, cell wall hydrolysis, or osmotic shock, but is synergistic with lysozyme and antibacterial peptides.

Human, mouse, and porcine PGLYRP2 are enzymes, N-acetylmuramoyl-L-alanine amidases, that hydrolyze the amide bond between the MurNAc and L-alanine, the first amino acid in the stem peptide in bacterial cell wall peptidoglycan. The minimal peptidoglycan fragment hydrolyzed by PGLYRP2 is MurNAc-tripeptide. Hydrolysis of peptidoglycan by PGLYRP2 diminishes its pro-inflammatory activity.[90]

Unlike invertebrate and lower vertebrate PGRPs, mammalian PGRPs have only limited role in defense against infections. Intranasal application of PGLYRP3 or PGLYRP4 in mice protects from intranasal lung infection with Staphylococcus aureus and Escherichia coli,[91] and intravenous administration of PGLYRP1 protects mice from systemic Listeria monocytogenes infection.[92] Also, PGLYRP1-deficient mice are more sensitive to systemic infections with non-pathogenic bacteria (Micrococcus luteus and Bacillus subtilis) and to Pseudomonas aeruginosa-induced keratitis, but not to systemic infections with several pathogenic bacteria (S. aureus and E. coli). However, PGLYRP1 protects mice against B. burgdorferi infection, as mice lacking PGLYRP1 have increased spirochete burden in the heart and joints, but not in the skin, indicating the role for PGLYRP1 in controlling dissemination of B. burgdorferi during the systemic phase of infection. PGLYRP2-deficient mice are more sensitive to P. aeruginosa-induced keratitis[93] and Streptococcus pneumoniae-induced pneumonia and sepsis,[94] and PGLYRP4-deficient mice are more sensitive to S. pneumoniae-induced pneumonia.[95]

Mouse PGRPs play a role in maintaining healthy microbiome, as PGLYRP1-, PGLYRP2-, PGLYRP3-, and PGLYRP4-deficient mice have significant changes in the composition of their intestinal microbiomes[96] [97] and PGLYRP1-deficient mice also have changes in their lung microbiome.

Mouse PGRPs also play a role in maintaining anti- and pro-inflammatory homeostasis in the intestine, skin, lungs, joints, and brain.[98] All four PGLYRPs protect mice from dextran sodium sulfate (DSS)-induced colitis and the effect of PGLYRP2 and PGLYRP3 on the intestinal microbiome is responsible for this protection.[99] PGLYRP3 is anti-inflammatory in intestinal epithelial cells.[100] PGLYRP4 has anti-inflammatory effect in a mouse model of S. pneumoniae pneumonia and sepsis, which also depends on the PGLYRP4-controlled microbiome.

PGLYRP3 and PGLYRP4 are anti-inflammatory and protect mice from atopic dermatitis[101] and PGLYRP4 also protects mice from Bordetella pertussis-induced airway inflammation.[102] PGLYRP2 is anti-inflammatory and protects mice from experimentally-induced psoriasis-like inflammation[103] and Salmonella enterica-induced intestinal inflammation. But PGLYRP2 has also pro-inflammatory effects, as it promotes the development of experimental arthritis,[104] bacterially-induced keratitis, and inflammation in S. pneumoniae lung infection in mice. PGLYRP2 also regulates motor activity and anxiety-dependent behavior in mice.[105]

PGLYRP1 is pro-inflammatory and promotes experimentally-induced asthma, skin inflammation, and experimental autoimmune encephalomyelitis (EAE)[106] in mice. The pro-inflammatory effect in asthma depends on the PGLYRP1-regulated intestinal microbiome, whereas in EAE, it depends on the expression of PGLYRP1 in monocytes, macrophages, and neutrophils. PGLYRP1 also has anti-inflammatory effects, as it inhibits the activation of cytotoxic anti-tumor CD8+ T cells and its deletion leads to decreased tumor growth in mice. Mice lacking PGLYRP1 infected with B. burgdorferi show signs of immune dysregulation, which results in Th1 cytokine response and impairment of antibody response to B. burgdorferi. PGLYRP1 also promotes wound healing in experimentally-induced keratitis in mice.

Some mammalian PGRPs can also function as host receptor agonists or antagonists. Human PGLYRP1 complexed with peptidoglycan or multimerized binds to and stimulates TREM-1 (triggering receptor expressed on myeloid cells-1), a receptor present on neutrophils, monocytes and macrophages that induces production of pro-inflammatory cytokines.[107]

Human and mouse PGLYRP1 (Tag7) bind heat shock protein 70 (Hsp70) in solution and PGLYRP1-Hsp70 complexes are also secreted by cytotoxic lymphocytes, and these complexes are cytotoxic for tumor cells.[108] [109] This cytotoxicity is antagonized by metastasin (S100A4)[110] and heat shock-binding protein HspBP1.[111] PGLYRP1-Hsp70 complexes bind to the TNFR1 (tumor necrosis factor receptor-1, which is a death receptor) and induce a cytotoxic effect via apoptosis and necroptosis.[112] This cytotoxicity is associated with permeabilization of lysosomes and mitochondria.[113] By contrast, free PGLYRP1 acts as a TNFR1 antagonist by binding to TNFR1 and inhibiting its activation by PGLYRP1-Hsp70 complexes. Peptides from human PGLYRP1 also inhibit the cytotoxic effects of TNF-α and PGLYRP1-Hsp70 complexes[114] and cytokine production in human peripheral blood mononuclear cells.[115] They also decrease inflammatory responses in a mouse model of acute lung injury and in the complete Freund's adjuvant-induced arthritis in mice.[116]

Medical relevance

Genetic PGLYRP variants or changed expression of PGRPs are associated with several diseases. Patients with inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, have significantly more frequent missense variants in all four PGLYRP genes than healthy controls.[117] These results suggest that PGRPs protect humans from these inflammatory diseases, and that mutations in PGLYRP genes are among the genetic factors predisposing to these diseases. PGLYRP1 variants are also associated with increased fetal hemoglobin in sickle cell disease,[118] PGLYRP2 variants are associated with esophageal squamous cell carcinoma,[119] PGLYRP2, PGLYRP3, and PGLYRP4 variants are associated with Parkinson's disease,[120] [121] [122] PGLYRP3 and PGLYRP4 variants are associated with psoriasis[123] [124] and composition of airway microbiome,[125] and PGLYRP4 variants are associated with ovarian cancer.[126]

Several diseases are associated with increased expression of PGLYRP1, including: atherosclerosis,[127] [128] myocardial infarction,[129] heart failure,[130] [131] coronary artery disease,[132] sepsis,[133] pulmonary fibrosis,[134] asthma,[135] chronic kidney disease,[136] rheumatoid arthritis,[137] gingival inflammation,[138] [139] [140] [141] [142] [143] caries and muscle and joint diseases,[144] osteoarthritis,[145] cardiovascular events and death in kidney transplant patients,[146] ulcerative colitis and Crohn's disease,[147] alopecia,[148] type I diabetes,[149] infectious complications in hemodialysis,[150] and thrombosis,[151] consistent with pro-inflammatory effects of PGLYRP1. Lower expression of PGLYRP1 was found in endometriosis.[152] Umbilical cord blood serum concentration of PGLYRP1 is inversely associated with pediatric asthma and pulmonary function in adolescence.[153]

Increased serum PGLYRP2 levels are present in patients with systemic lupus erythematosus and correlate with disease activity index, renal damage, and abnormal lipid profile.[154] Autoantibodies to PGLYRP2 are significantly increased in patients with rheumatoid arthritis.[155] Decreased expression of PGLYRP2 is found in HIV-associated[156] and drug-sensitive[157] tuberculosis, Lyme disease,[158] hepatocellular carcinoma,[159] and myocardial infarction.[160]

Applications

A silkworm larvae plasma (SLP) test to detect peptidoglycan, based on activation of the prophenoloxidase cascade by PGRP in the hemolymph of the silkworm, Bombyx mori, is available.[161] [162]

See also

Further reading

Notes and References

  1. Royet. Julien. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nature Reviews Immunology. 11 November 2011. 10.1038/nri3089. 22076558. 11. 12. 837–51. 5266193.
  2. Royet. Julien. Dziarski . Roman Dziarski . Roman. April 2007. Peptidoglycan recognition proteins: pleiotropic sensors and effectors of antimicrobial defences. Nature Reviews Microbiology. en. 5. 4. 264–277. 10.1038/nrmicro1620. 17363965. 39569790. 1740-1526.
  3. Yoshida. Hideya. Kinoshita. Kuninori. Ashida. Masaaki. 1996-06-07. Purification of a Peptidoglycan Recognition Protein from Hemolymph of the Silkworm, Bombyx mori. Journal of Biological Chemistry. en. 271. 23. 13854–13860. 10.1074/jbc.271.23.13854. 8662762. 20831557. 0021-9258. free.
  4. Kang. D.. Liu. G.. Lundstrom. A.. Gelius. E.. Steiner. H.. 1998-08-18. A peptidoglycan recognition protein in innate immunity conserved from insects to humans. Proceedings of the National Academy of Sciences. en. 95. 17. 10078–10082. 10.1073/pnas.95.17.10078. 0027-8424. 21464. 9707603. 1998PNAS...9510078K. free.
  5. Kiselev. Sergei L.. Kustikova. Olga S.. Korobko. Elena V.. Prokhortchouk. Egor B.. Kabishev. Andrei A.. Lukanidin. Evgenii M.. Georgiev. Georgii P.. 1998-07-17. Molecular Cloning and Characterization of the Mouse tag7 Gene Encoding a Novel Cytokine. Journal of Biological Chemistry. en. 273. 29. 18633–18639. 10.1074/jbc.273.29.18633. 9660837. 11417742. 0021-9258. free.
  6. Ochiai. Masanori. Ashida. Masaaki. 1999-04-23. A Pattern Recognition Protein for Peptidoglycan: CLONING THE cDNA AND THE GENE OF THE SILKWORM, BOMBYX MORI. Journal of Biological Chemistry. en. 274. 17. 11854–11858. 10.1074/jbc.274.17.11854. 10207004. 38022527. 0021-9258. free.
  7. Werner. T.. Liu. G.. Kang. D.. Ekengren. S.. Steiner. H.. Hultmark. D.. 2000-12-05. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proceedings of the National Academy of Sciences. en. 97. 25. 13772–13777. 10.1073/pnas.97.25.13772. 0027-8424. 17651. 11106397. 2000PNAS...9713772W. free.
  8. Liu. Chao. Xu. Zhaojun. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. 2001-09-14. Peptidoglycan Recognition Proteins: A NOVEL FAMILY OF FOUR HUMAN INNATE IMMUNITY PATTERN RECOGNITION MOLECULES. Journal of Biological Chemistry. en. 276. 37. 34686–34694. 10.1074/jbc.M105566200. 11461926. 44619852. 0021-9258. free.
  9. Kibardin. A. V.. Mirkina. I. I.. Korneeva. E. A.. Gnuchev. N. V.. Georgiev. G. P.. Kiselev. S. L.. May 2000. Molecular cloning of a new mouse gene tagL containing a lysozyme-like domain. Doklady Biochemistry: Proceedings of the Academy of Sciences of the USSR, Biochemistry Section. 372. 1–6. 103–105. 0012-4958. 10935177.
  10. Kibardin. A. V.. Mirkina. I. I.. Baranova. E. V.. Zakeyeva. I. R.. Georgiev. G. P.. Kiselev. S. L.. 2003-02-14. The differentially spliced mouse tagL gene, homolog of tag7/PGRP gene family in mammals and Drosophila, can recognize Gram-positive and Gram-negative bacterial cell wall independently of T phage lysozyme homology domain. Journal of Molecular Biology. 326. 2. 467–474. 10.1016/s0022-2836(02)01401-8. 0022-2836. 12559914.
  11. Kim. Min-Sung. Byun. Minji. Oh. Byung-Ha. August 2003. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nature Immunology. 4. 8. 787–793. 10.1038/ni952. 1529-2908. 12845326. 11458146.
  12. Christophides. George K.. Zdobnov. Evgeny. Barillas-Mury. Carolina. Birney. Ewan. Blandin. Stephanie. Blass. Claudia. Brey. Paul T.. Collins. Frank H.. Danielli. Alberto. Dimopoulos. George. Hetru. Charles. 2002-10-04. Immunity-related genes and gene families in Anopheles gambiae. Science. 298. 5591. 159–165. 10.1126/science.1077136. 1095-9203. 12364793. 2002Sci...298..159C. 806834.
  13. Dziarski . Roman Dziarski . Roman. Gupta. Dipika. The peptidoglycan recognition proteins (PGRPs). Genome Biology. 2006. 7. 8. 232. 10.1186/gb-2006-7-8-232. 16930467. 1779587 . free .
  14. Guan. Rongjin. Roychowdhury. Abhijit. Ember. Brian. Kumar. Sanjay. Boons. Geert-Jan. Mariuzza. Roy A.. 2004-12-07. Structural basis for peptidoglycan binding by peptidoglycan recognition proteins. Proceedings of the National Academy of Sciences of the United States of America. 101. 49. 17168–17173. 10.1073/pnas.0407856101. 0027-8424. 535381. 15572450. 2004PNAS..10117168G. free.
  15. Guan. Rongjin. Brown. Patrick H.. Swaminathan. Chittoor P.. Roychowdhury. Abhijit. Boons. Geert-Jan. Mariuzza. Roy A.. May 2006. Crystal structure of human peptidoglycan recognition protein I alpha bound to a muramyl pentapeptide from Gram-positive bacteria. Protein Science. 15. 5. 1199–1206. 10.1110/ps.062077606. 0961-8368. 2242522. 16641493.
  16. De Pauw. P.. Neyt. C.. Vanderwinkel. E.. Wattiez. R.. Falmagne. P.. June 1995. Characterization of human serum N-acetylmuramyl-L-alanine amidase purified by affinity chromatography. Protein Expression and Purification. 6. 3. 371–378. 10.1006/prep.1995.1049. 1046-5928. 7663175.
  17. Zhang. Yinong. van der Fits. Leslie. Voerman. Jane S.. Melief. Marie-Jose. Laman. Jon D.. Wang. Mu. Wang. Haitao. Wang. Minhui. Li. Xinna. Walls. Chad D.. Gupta. Dipika. 2005-08-31. Identification of serum N-acetylmuramoyl-l-alanine amidase as liver peptidoglycan recognition protein 2. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1752. 1. 34–46. 10.1016/j.bbapap.2005.07.001. 0006-3002. 16054449.
  18. Lu. Xiaofeng. Wang. Minhui. Qi. Jin. Wang. Haitao. Li. Xinna. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. 2006-03-03. Peptidoglycan recognition proteins are a new class of human bactericidal proteins. The Journal of Biological Chemistry. 281. 9. 5895–5907. 10.1074/jbc.M511631200. 0021-9258. 16354652. 21943426. free.
  19. Lim. Jae-Hong. Kim. Min-Sung. Kim. Han-Eol. Yano. Tamaki. Oshima. Yoshiteru. Aggarwal. Kamna. Goldman. William E.. Silverman. Neal. Kurata. Shoichiro. Oh. Byung-Ha. 2006-03-24. Structural basis for preferential recognition of diaminopimelic acid-type peptidoglycan by a subset of peptidoglycan recognition proteins. The Journal of Biological Chemistry. 281. 12. 8286–8295. 10.1074/jbc.M513030200. 0021-9258. 16428381. 6805851. free.
  20. Kumar. Sanjay. Roychowdhury. Abhijit. Ember. Brian. Wang. Qian. Guan. Rongjin. Mariuzza. Roy A.. Boons. Geert-Jan. 2005-11-04. Selective recognition of synthetic lysine and meso-diaminopimelic acid-type peptidoglycan fragments by human peptidoglycan recognition proteins I and S. The Journal of Biological Chemistry. 280. 44. 37005–37012. 10.1074/jbc.M506385200. 0021-9258. 16129677. 44913130. free.
  21. Rutschmann. S.. Jung. A. C.. Hetru. C.. Reichhart. J. M.. Hoffmann. J. A.. Ferrandon. D.. May 2000. The Rel protein DIF mediates the antifungal but not the antibacterial host defense in Drosophila. Immunity. 12. 5. 569–580. 10.1016/s1074-7613(00)80208-3. 1074-7613. 10843389. free.
  22. Michel. T.. Reichhart. J. M.. Hoffmann. J. A.. Royet. J.. 2001-12-13. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature. 414. 6865. 756–759. 10.1038/414756a. 0028-0836. 11742401. 2001Natur.414..756M. 4401465.
  23. Gobert. Vanessa. Gottar. Marie. Matskevich. Alexey A.. Rutschmann. Sophie. Royet. Julien. Belvin. Marcia. Hoffmann. Jules A.. Ferrandon. Dominique. 2003-12-19. Dual activation of the Drosophila toll pathway by two pattern recognition receptors. Science. 302. 5653. 2126–2130. 10.1126/science.1085432. 1095-9203. 14684822. 2003Sci...302.2126G. 36399744.
  24. Bischoff. Vincent. Vignal. Cécile. Boneca. Ivo G.. Michel. Tatiana. Hoffmann. Jules A.. Royet. Julien. November 2004. Function of the drosophila pattern-recognition receptor PGRP-SD in the detection of Gram-positive bacteria. Nature Immunology. 5. 11. 1175–1180. 10.1038/ni1123. 1529-2908. 15448690. 22507734.
  25. Leulier. François. Parquet. Claudine. Pili-Floury. Sebastien. Ryu. Ji-Hwan. Caroff. Martine. Lee. Won-Jae. Mengin-Lecreulx. Dominique. Lemaitre. Bruno. May 2003. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nature Immunology. 4. 5. 478–484. 10.1038/ni922. 1529-2908. 12692550. 2430114.
  26. Kaneko. Takashi. Goldman. William E.. Mellroth. Peter. Steiner. Håkan. Fukase. Koichi. Kusumoto. Shoichi. Harley. William. Fox. Alvin. Golenbock. Douglas. Silverman. Neal. May 2004. Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity. 20. 5. 637–649. 10.1016/s1074-7613(04)00104-9. 1074-7613. 15142531. free.
  27. Choe. Kwang-Min. Lee. Hyangkyu. Anderson. Kathryn V.. 2005-01-25. Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor. Proceedings of the National Academy of Sciences of the United States of America. 102. 4. 1122–1126. 10.1073/pnas.0404952102. 0027-8424. 545828. 15657141. 2005PNAS..102.1122C. free.
  28. Ha. Eun-Mi. Lee. Kyung-Ah. Seo. You Yeong. Kim. Sung-Hee. Lim. Jae-Hong. Oh. Byung-Ha. Kim. Jaesang. Lee. Won-Jae. September 2009. Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nature Immunology. 10. 9. 949–957. 10.1038/ni.1765. 1529-2916. 19668222. 26945390.
  29. Takehana. Aya. Katsuyama. Tomonori. Yano. Tamaki. Oshima. Yoshiteru. Takada. Haruhiko. Aigaki. Toshiro. Kurata. Shoichiro. 2002-10-15. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein-LE, activates imd/relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proceedings of the National Academy of Sciences of the United States of America. 99. 21. 13705–13710. 10.1073/pnas.212301199. 0027-8424. 129750. 12359879. 2002PNAS...9913705T. free.
  30. Park. Ji-Won. Kim. Chan-Hee. Kim. Jung-Hyun. Je. Byung-Rok. Roh. Kyung-Baeg. Kim. Su-Jin. Lee. Hyeon-Hwa. Ryu. Ji-Hwan. Lim. Jae-Hong. Oh. Byung-Ha. Lee. Won-Jae. 2007-04-17. Clustering of peptidoglycan recognition protein-SA is required for sensing lysine-type peptidoglycan in insects. Proceedings of the National Academy of Sciences of the United States of America. 104. 16. 6602–6607. 10.1073/pnas.0610924104. 0027-8424. 1871832. 17409189. 2007PNAS..104.6602P. free.
  31. Mellroth. Peter. Karlsson. Jenny. Steiner. Hakan. 2003-02-28. A scavenger function for a Drosophila peptidoglycan recognition protein. The Journal of Biological Chemistry. 278. 9. 7059–7064. 10.1074/jbc.M208900200. 0021-9258. 12496260. 22490347. free.
  32. Bischoff. Vincent. Vignal. Cécile. Duvic. Bernard. Boneca. Ivo G.. Hoffmann. Jules A.. Royet. Julien. February 2006. Downregulation of the Drosophila immune response by peptidoglycan-recognition proteins SC1 and SC2. PLOS Pathogens. 2. 2. e14. 10.1371/journal.ppat.0020014. 1553-7374. 1383489. 16518472 . free .
  33. Zaidman-Rémy. Anna. Hervé. Mireille. Poidevin. Mickael. Pili-Floury. Sébastien. Kim. Min-Sung. Blanot. Didier. Oh. Byung-Ha. Ueda. Ryu. Mengin-Lecreulx. Dominique. Lemaitre. Bruno. April 2006. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity. 24. 4. 463–473. 10.1016/j.immuni.2006.02.012. 1074-7613. 16618604. free.
  34. Mellroth. Peter. Steiner. Håkan. 2006-12-01. PGRP-SB1: an N-acetylmuramoyl L-alanine amidase with antibacterial activity. Biochemical and Biophysical Research Communications. 350. 4. 994–999. 10.1016/j.bbrc.2006.09.139. 0006-291X. 17046713.
  35. Wang. Jingwen. Aksoy. Serap. 2012-06-26. PGRP-LB is a maternally transmitted immune milk protein that influences symbiosis and parasitism in tsetse's offspring. Proceedings of the National Academy of Sciences of the United States of America. 109. 26. 10552–10557. 10.1073/pnas.1116431109. 1091-6490. 3387098. 22689989. 2012PNAS..10910552W. free.
  36. Maillet. Frédéric. Bischoff. Vincent. Vignal. Cécile. Hoffmann. Jules. Royet. Julien. 2008-05-15. The Drosophila peptidoglycan recognition protein PGRP-LF blocks PGRP-LC and IMD/JNK pathway activation. Cell Host & Microbe. 3. 5. 293–303. 10.1016/j.chom.2008.04.002. 1934-6069. 18474356. free.
  37. Basbous. Nada. Coste. Franck. Leone. Philippe. Vincentelli. Renaud. Royet. Julien. Kellenberger. Christine. Roussel. Alain. April 2011. The Drosophila peptidoglycan-recognition protein LF interacts with peptidoglycan-recognition protein LC to downregulate the Imd pathway. EMBO Reports. 12. 4. 327–333. 10.1038/embor.2011.19. 1469-3178. 3077246. 21372849.
  38. Blanco. Guillermo A.. Malchiodi. Emilio L.. De Marzi. Mauricio C.. October 2008. Cellular clot formation in a sipunculan worm: entrapment of foreign particles, cell death and identification of a PGRP-related protein. Journal of Invertebrate Pathology. 99. 2. 156–165. 10.1016/j.jip.2008.05.006. 1096-0805. 18621387.
  39. Zhang. Si-Ming. Zeng. Yong. Loker. Eric S.. November 2007. Characterization of immune genes from the schistosome host snail Biomphalaria glabrata that encode peptidoglycan recognition proteins and gram-negative bacteria binding protein. Immunogenetics. 59. 11. 883–898. 10.1007/s00251-007-0245-3. 0093-7711. 3632339. 17805526.
  40. Itoh. Naoki. Takahashi. Keisuke G.. August 2008. Distribution of multiple peptidoglycan recognition proteins in the tissues of Pacific oyster, Crassostrea gigas. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology. 150. 4. 409–417. 10.1016/j.cbpb.2008.04.011. 1096-4959. 18538602.
  41. Iizuka. Masao. Nagasaki. Toshihiro. Takahashi. Keisuke G.. Osada. Makoto. Itoh. Naoki. March 2014. Involvement of Pacific oyster CgPGRP-S1S in bacterial recognition, agglutination and granulocyte degranulation. Developmental and Comparative Immunology. 43. 1. 30–34. 10.1016/j.dci.2013.10.011. 1879-0089. 24201133.
  42. Ni. Duojiao. Song. Linsheng. Wu. Longtao. Chang. Yaqing. Yu. Yundong. Qiu. Limei. Wang. Lingling. 2007. Molecular cloning and mRNA expression of peptidoglycan recognition protein (PGRP) gene in bay scallop (Argopecten irradians, Lamarck 1819). Developmental and Comparative Immunology. 31. 6. 548–558. 10.1016/j.dci.2006.09.001. 0145-305X. 17064771.
  43. Yang. Jialong. Wang. Wan. Wei. Xiumei. Qiu. Limei. Wang. Lingling. Zhang. Huan. Song. Linsheng. December 2010. Peptidoglycan recognition protein of Chlamys farreri (CfPGRP-S1) mediates immune defenses against bacterial infection. Developmental and Comparative Immunology. 34. 12. 1300–1307. 10.1016/j.dci.2010.08.006. 1879-0089. 20713083.
  44. Goodson. Michael S.. Kojadinovic. Mila. Troll. Joshua V.. Scheetz. Todd E.. Casavant. Thomas L.. Soares. M. Bento. McFall-Ngai. Margaret J.. November 2005. Identifying components of the NF-kappaB pathway in the beneficial Euprymna scolopes-Vibrio fischeri light organ symbiosis. Applied and Environmental Microbiology. 71. 11. 6934–6946. 10.1128/AEM.71.11.6934-6946.2005. 0099-2240. 1287678. 16269728. 2005ApEnM..71.6934G.
  45. Coteur. Geoffroy. Mellroth. Peter. De Lefortery. Coline. Gillan. David. Dubois. Philippe. Communi. David. Steiner. Håkan. 2007. Peptidoglycan recognition proteins with amidase activity in early deuterostomes (Echinodermata). Developmental and Comparative Immunology. 31. 8. 790–804. 10.1016/j.dci.2006.11.006. 0145-305X. 17240448.
  46. Troll. Joshua V.. Adin. Dawn M.. Wier. Andrew M.. Paquette. Nicholas. Silverman. Neal. Goldman. William E.. Stadermann. Frank J.. Stabb. Eric V.. McFall-Ngai. Margaret J.. July 2009. Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal-bacterial symbiosis. Cellular Microbiology. 11. 7. 1114–1127. 10.1111/j.1462-5822.2009.01315.x. 1462-5822. 2758052. 19416268.
  47. Troll. Joshua V.. Bent. Eric H.. Pacquette. Nicholas. Wier. Andrew M.. Goldman. William E.. Silverman. Neal. McFall-Ngai. Margaret J.. August 2010. Taming the symbiont for coexistence: a host PGRP neutralizes a bacterial symbiont toxin. Environmental Microbiology. 12. 8. 2190–2203. 10.1111/j.1462-2920.2009.02121.x. 1462-2920. 2889240. 21966913.
  48. Huang. Shengfeng. Wang. Xin. Yan. Qingyu. Guo. Lei. Yuan. Shaochun. Huang. Guangrui. Huang. Huiqing. Li. Jun. Dong. Meiling. Chen. Shangwu. Xu. Anlong. 2011-02-15. The evolution and regulation of the mucosal immune complexity in the basal chordate amphioxus. Journal of Immunology. 186. 4. 2042–2055. 10.4049/jimmunol.1001824. 1550-6606. 21248255. 25397745. free.
  49. Li. Xinna. Wang. Shiyong. Qi. Jin. Echtenkamp. Stephen F.. Chatterjee. Rohini. Wang. Mu. Boons. Geert-Jan. Dziarski . Roman Dziarski . Roman. Gupta. Dipika. September 2007. Zebrafish peptidoglycan recognition proteins are bactericidal amidases essential for defense against bacterial infections. Immunity. 27. 3. 518–529. 10.1016/j.immuni.2007.07.020. 1074-7613. 2074879. 17892854.
  50. Chang. M. X.. Nie. P.. Wei. L. L.. April 2007. Short and long peptidoglycan recognition proteins (PGRPs) in zebrafish, with findings of multiple PGRP homologs in teleost fish. Molecular Immunology. 44. 11. 3005–3023. 10.1016/j.molimm.2006.12.029. 0161-5890. 17296228.
  51. Montaño. Adriana M.. Tsujino. Fumi. Takahata. Naoyuki. Satta. Yoko. 2011-03-25. Evolutionary origin of peptidoglycan recognition proteins in vertebrate innate immune system. BMC Evolutionary Biology. 11. 79. 10.1186/1471-2148-11-79. 1471-2148. 3071341. 21439073 . free .
  52. Li. Jun Hua. Chang. Ming Xian. Xue. Na Na. Nie. P.. August 2013. Functional characterization of a short peptidoglycan recognition protein, PGRP5 in grass carp Ctenopharyngodon idella. Fish & Shellfish Immunology. 35. 2. 221–230. 10.1016/j.fsi.2013.04.025. 1095-9947. 23659995.
  53. Li. Jun Hua. Yu. Zhang Long. Xue. Na Na. Zou. Peng Fei. Hu. Jing Yu. Nie. P.. Chang. Ming Xian. February 2014. Molecular cloning and functional characterization of peptidoglycan recognition protein 6 in grass carp Ctenopharyngodon idella. Developmental and Comparative Immunology. 42. 2. 244–255. 10.1016/j.dci.2013.09.014. 1879-0089. 24099967.
  54. Chang. M. X.. Nie. P.. 2008-08-15. RNAi suppression of zebrafish peptidoglycan recognition protein 6 (zfPGRP6) mediated differentially expressed genes involved in Toll-like receptor signaling pathway and caused increased susceptibility to Flavobacterium columnare. Veterinary Immunology and Immunopathology. 124. 3–4. 295–301. 10.1016/j.vetimm.2008.04.003. 0165-2427. 18495251. 41534729 .
  55. Chang. M. X.. Wang. Y. P.. Nie. P.. February 2009. Zebrafish peptidoglycan recognition protein SC (zfPGRP-SC) mediates multiple intracellular signaling pathways. Fish & Shellfish Immunology. 26. 2. 264–274. 10.1016/j.fsi.2008.11.007. 1095-9947. 19084604.
  56. Gelius. Eva. Persson. Carina. Karlsson. Jenny. Steiner. Håkan. 2003-07-11. A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L-alanine amidase activity. Biochemical and Biophysical Research Communications. 306. 4. 988–994. 10.1016/s0006-291x(03)01096-9. 0006-291X. 12821140.
  57. Wang. Zheng-Ming. Li. Xinna. Cocklin. Ross R.. Wang. Minhui. Wang. Mu. Fukase. Koichi. Inamura. Seiichi. Kusumoto. Shoichi. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. 2003-12-05. Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. The Journal of Biological Chemistry. 278. 49. 49044–49052. 10.1074/jbc.M307758200. 0021-9258. 14506276. 35373818. free.
  58. Tydell. C. Chace. Yount. Nannette. Tran. Dat. Yuan. Jun. Selsted. Michael E.. 2002-05-31. Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. A microbicidal granule protein of eosinophils and neutrophils. The Journal of Biological Chemistry. 277. 22. 19658–19664. 10.1074/jbc.M200659200. 0021-9258. 11880375. 904536. free.
  59. Lo. David. Tynan. Wendy. Dickerson. Janet. Mendy. Jason. Chang. Hwai-Wen. Scharf. Melinda. Byrne. Daragh. Brayden. David. Higgins. Lisa. Evans. Claire. O'Mahony. Daniel J.. July 2003. Peptidoglycan recognition protein expression in mouse Peyer's Patch follicle associated epithelium suggests functional specialization. Cellular Immunology. 224. 1. 8–16. 10.1016/s0008-8749(03)00155-2. 0008-8749. 14572796.
  60. Kappeler. S. R.. Heuberger. C.. Farah. Z.. Puhan. Z.. August 2004. Expression of the peptidoglycan recognition protein, PGRP, in the lactating mammary gland. Journal of Dairy Science. 87. 8. 2660–2668. 10.3168/jds.S0022-0302(04)73392-5. 0022-0302. 15328291. free.
  61. Ghosh. Amit. Lee. Seakwoo. Dziarski . Roman Dziarski . Roman. Chakravarti. Shukti. September 2009. A novel antimicrobial peptidoglycan recognition protein in the cornea. Investigative Ophthalmology & Visual Science. 50. 9. 4185–4191. 10.1167/iovs.08-3040. 1552-5783. 3052780. 19387073.
  62. Park. Shin Yong. Jing. Xuefang. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. 2013-04-01. Peptidoglycan recognition protein 1 enhances experimental asthma by promoting Th2 and Th17 and limiting regulatory T cell and plasmacytoid dendritic cell responses. Journal of Immunology. 190. 7. 3480–3492. 10.4049/jimmunol.1202675. 1550-6606. 3608703. 23420883.
  63. Yao. Xianglan. Gao. Meixia. Dai. Cuilian. Meyer. Katharine S.. Chen. Jichun. Keeran. Karen J.. Nugent. Gayle Z.. Qu. Xuan. Yu. Zu-Xi. Dagur. Pradeep K.. McCoy. J. Philip. December 2013. Peptidoglycan recognition protein 1 promotes house dust mite-induced airway inflammation in mice. American Journal of Respiratory Cell and Molecular Biology. 49. 6. 902–911. 10.1165/rcmb.2013-0001OC. 1535-4989. 3931111. 23808363.
  64. Xu. Min. Wang. Zhien. Locksley. Richard M.. September 2004. Innate immune responses in peptidoglycan recognition protein L-deficient mice. Molecular and Cellular Biology. 24. 18. 7949–7957. 10.1128/MCB.24.18.7949-7957.2004. 0270-7306. 515053. 15340057.
  65. Li. Xinna. Wang. Shiyong. Wang. Haitao. Gupta. Dipika. 2006-07-28. Differential expression of peptidoglycan recognition protein 2 in the skin and liver requires different transcription factors. The Journal of Biological Chemistry. 281. 30. 20738–20748. 10.1074/jbc.M601017200. 0021-9258. 16714290. 22076229. free.
  66. Hoijer. M. A.. Melief. M. J.. Keck. W.. Hazenberg. M. P.. 1996-02-09. Purification and characterization of N-acetylmuramyl-L-alanine amidase from human plasma using monoclonal antibodies. Biochimica et Biophysica Acta (BBA) - General Subjects. 1289. 1. 57–64. 10.1016/0304-4165(95)00136-0. 0006-3002. 8605233. 1765/62308. free.
  67. Wang. Haitao. Gupta. Dipika. Li. Xinna. Dziarski . Roman Dziarski . Roman. November 2005. Peptidoglycan recognition protein 2 (N-acetylmuramoyl-L-Ala amidase) is induced in keratinocytes by bacteria through the p38 kinase pathway. Infection and Immunity. 73. 11. 7216–7225. 10.1128/IAI.73.11.7216-7225.2005. 0019-9567. 1273900. 16239516.
  68. Uehara. A.. Sugawara. Y.. Kurata. S.. Fujimoto. Y.. Fukase. K.. Kusumoto. S.. Satta. Y.. Sasano. T.. Sugawara. S.. Takada. H.. May 2005. Chemically synthesized pathogen-associated molecular patterns increase the expression of peptidoglycan recognition proteins via toll-like receptors, NOD1 and NOD2 in human oral epithelial cells. Cellular Microbiology. 7. 5. 675–686. 10.1111/j.1462-5822.2004.00500.x. 1462-5814. 15839897. 20544993. free.
  69. Duerr. C. U.. Salzman. N. H.. Dupont. A.. Szabo. A.. Normark. B. H.. Normark. S.. Locksley. R. M.. Mellroth. P.. Hornef. M. W.. May 2011. Control of intestinal Nod2-mediated peptidoglycan recognition by epithelium-associated lymphocytes. Mucosal Immunology. 4. 3. 325–334. 10.1038/mi.2010.71. 1935-3456. 20980996. 10298644. free.
  70. Lee. Jooeun. Geddes. Kaoru. Streutker. Catherine. Philpott. Dana J.. Girardin. Stephen E.. August 2012. Role of mouse peptidoglycan recognition protein PGLYRP2 in the innate immune response to Salmonella enterica serovar Typhimurium infection in vivo. Infection and Immunity. 80. 8. 2645–2654. 10.1128/IAI.00168-12. 1098-5522. 3434585. 22615249.
  71. Sang. Yongming. Ramanathan. Balaji. Ross. Christopher R.. Blecha. Frank. November 2005. Gene silencing and overexpression of porcine peptidoglycan recognition protein long isoforms: involvement in beta-defensin-1 expression. Infection and Immunity. 73. 11. 7133–7141. 10.1128/IAI.73.11.7133-7141.2005. 0019-9567. 1273832. 16239507.
  72. Mathur. Punam. Murray. Beth. Crowell. Thomas. Gardner. Humphrey. Allaire. Normand. Hsu. Yen-Ming. Thill. Greg. Carulli. John P.. June 2004. Murine peptidoglycan recognition proteins PglyrpIalpha and PglyrpIbeta are encoded in the epidermal differentiation complex and are expressed in epidermal and hematopoietic tissues. Genomics. 83. 6. 1151–1163. 10.1016/j.ygeno.2004.01.003. 0888-7543. 15177568.
  73. Saha. Sukumar. Jing. Xuefang. Park. Shin Yong. Wang. Shiyong. Li. Xinna. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. 2010-08-19. Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-gamma. Cell Host & Microbe. 8. 2. 147–162. 10.1016/j.chom.2010.07.005. 1934-6069. 2998413. 20709292.
  74. Arentsen. T.. Qian. Y.. Gkotzis. S.. Femenia. T.. Wang. T.. Udekwu. K.. Forssberg. H.. Diaz Heijtz. R.. February 2017. The bacterial peptidoglycan-sensing molecule Pglyrp2 modulates brain development and behavior. Molecular Psychiatry. 22. 2. 257–266. 10.1038/mp.2016.182. 1476-5578. 5285465. 27843150.
  75. Rehman. A.. Taishi. P.. Fang. J.. Majde. J. A.. Krueger. J. M.. 2001-01-07. The cloning of a rat peptidoglycan recognition protein (PGRP) and its induction in brain by sleep deprivation. Cytokine. 13. 1. 8–17. 10.1006/cyto.2000.0800. 1043-4666. 11145837.
  76. Lang. Ming-Fei. Schneider. Armin. Krüger. Carola. Schmid. Roland. Dziarski . Roman Dziarski . Roman. Schwaninger. Markus. 2008-01-10. Peptidoglycan recognition protein-S (PGRP-S) is upregulated by NF-kappaB. Neuroscience Letters. 430. 2. 138–141. 10.1016/j.neulet.2007.10.027. 0304-3940. 18035491. 54406942.
  77. Cho. Ju Hyun. Fraser. Iain P.. Fukase. Koichi. Kusumoto. Shoichi. Fujimoto. Yukari. Stahl. Gregory L.. Ezekowitz. R. Alan B.. 2005-10-01. Human peptidoglycan recognition protein S is an effector of neutrophil-mediated innate immunity. Blood. 106. 7. 2551–2558. 10.1182/blood-2005-02-0530. 0006-4971. 1895263. 15956276.
  78. Wang. Minhui. Liu. Li-Hui. Wang. Shiyong. Li. Xinna. Lu. Xiaofeng. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. 2007-03-01. Human peptidoglycan recognition proteins require zinc to kill both gram-positive and gram-negative bacteria and are synergistic with antibacterial peptides. Journal of Immunology. 178. 5. 3116–3125. 10.4049/jimmunol.178.5.3116. 0022-1767. 17312159. 22160694. free.
  79. Kashyap. Des Raj. Wang. Minhui. Liu. Li-Hui. Boons. Geert-Jan. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. June 2011. Peptidoglycan recognition proteins kill bacteria by activating protein-sensing two-component systems. Nature Medicine. 17. 6. 676–683. 10.1038/nm.2357. 1546-170X. 3176504. 21602801.
  80. Bobrovsky. Pavel. Manuvera. Valentin. Polina. Nadezhda. Podgorny. Oleg. Prusakov. Kirill. Govorun. Vadim. Lazarev. Vassili. July 2016. Recombinant Human Peptidoglycan Recognition Proteins Reveal Antichlamydial Activity. Infection and Immunity. 84. 7. 2124–2130. 10.1128/IAI.01495-15. 1098-5522. 4936355. 27160295.
  81. Kashyap. Des Raj. Rompca. Annemarie. Gaballa. Ahmed. Helmann. John D.. Chan. Jefferson. Chang. Christopher J.. Hozo. Iztok. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. July 2014. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress. PLOS Pathogens. 10. 7. e1004280. 10.1371/journal.ppat.1004280. 1553-7374. 4102600. 25032698 . free .
  82. Kashyap. Des R.. Kuzma. Marcin. Kowalczyk. Dominik A.. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. September 2017. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism. Molecular Microbiology. 105. 5. 755–776. 10.1111/mmi.13733. 1365-2958. 5570643. 28621879.
  83. Dziarski . Roman Dziarski . Roman. Gupta. Dipika. February 2018. How innate immunity proteins kill bacteria and why they are not prone to resistance. Current Genetics. 64. 1. 125–129. 10.1007/s00294-017-0737-0. 1432-0983. 5777906. 28840318.
  84. Kashyap. Des R.. Kowalczyk. Dominik A.. Shan. Yue. Yang. Chun-Kai. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. 6 February 2020. Formate dehydrogenase, ubiquinone, and cytochrome bd-I are required for peptidoglycan recognition protein-induced oxidative stress and killing in Escherichia coli. Scientific Reports. 10. 1. 1993. 10.1038/s41598-020-58302-1. 2045-2322. 7005000. 32029761. 2020NatSR..10.1993K.
  85. Gupta . Akash . Arora . Gunjan . Rosen . Connor E. . Kloos . Zachary . Cao . Yongguo . Cerny . Jiri . Sajid . Andaleeb . Hoornstra . Dieuwertje . Golovchenko . Maryna . Rudenko . Natalie . Munderloh . Ulrike . Hovius . Joppe W. . Booth . Carmen J. . Jacobs-Wagner . Christine . Palm . Noah W. . 2020-11-11 . Coburn . Jenifer . A human secretome library screen reveals a role for Peptidoglycan Recognition Protein 1 in Lyme borreliosis . PLOS Pathogens . en . 16 . 11 . e1009030 . 10.1371/journal.ppat.1009030 . 1553-7374 . 7657531 . 33175909 . free .
  86. Liu. C.. Gelius. E.. Liu. G.. Steiner. H.. Dziarski . Roman Dziarski . R.. 2000-08-11. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. The Journal of Biological Chemistry. 275. 32. 24490–24499. 10.1074/jbc.M001239200. 0021-9258. 10827080. 24226481. free.
  87. Dziarski . Roman Dziarski . Roman. Platt. Kenneth A.. Gelius. Eva. Steiner. Håkan. Gupta. Dipika. 2003-07-15. Defect in neutrophil killing and increased susceptibility to infection with nonpathogenic gram-positive bacteria in peptidoglycan recognition protein-S (PGRP-S)-deficient mice. Blood. 102. 2. 689–697. 10.1182/blood-2002-12-3853. 0006-4971. 12649138. free.
  88. Tydell. C. Chace. Yuan. Jun. Tran. Patti. Selsted. Michael E.. 2006-01-15. Bovine peptidoglycan recognition protein-S: antimicrobial activity, localization, secretion, and binding properties. Journal of Immunology. 176. 2. 1154–1162. 10.4049/jimmunol.176.2.1154. 0022-1767. 16394004. 11173657. free.
  89. Yang. Chun-Kai. Kashyap. Des R.. Kowalczyk. Dominik A.. Rudner. David Z.. Wang. Xindan. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. 2021-01-08. Respiratory chain components are required for peptidoglycan recognition protein-induced thiol depletion and killing in Bacillus subtilis and Escherichia coli. Scientific Reports. 11. 1. 64. 10.1038/s41598-020-79811-z. 2045-2322. 7794252. 33420211.
  90. Hoijer. M. A.. Melief. M. J.. Debets. R.. Hazenberg. M. P.. December 1997. Inflammatory properties of peptidoglycan are decreased after degradation by human N-acetylmuramyl-L-alanine amidase. European Cytokine Network. 8. 4. 375–381. 1148-5493. 9459617.
  91. Dziarski . Roman Dziarski . Roman. Kashyap. Des Raj. Gupta. Dipika. June 2012. Mammalian peptidoglycan recognition proteins kill bacteria by activating two-component systems and modulate microbiome and inflammation. Microbial Drug Resistance (Larchmont, N.Y.). 18. 3. 280–285. 10.1089/mdr.2012.0002. 1931-8448. 3412580. 22432705.
  92. Osanai. Arihiro. Sashinami. Hiroshi. Asano. Krisana. Li. Sheng-Jun. Hu. Dong-Liang. Nakane. Akio. February 2011. Mouse peptidoglycan recognition protein PGLYRP-1 plays a role in the host innate immune response against Listeria monocytogenes infection. Infection and Immunity. 79. 2. 858–866. 10.1128/IAI.00466-10. 1098-5522. 3028829. 21134971.
  93. Gowda. Ranjita N.. Redfern. Rachel. Frikeche. Jihane. Pinglay. Sudarshan. Foster. James William. Lema. Carolina. Cope. Leslie. Chakravarti. Shukti. 2015. Functions of Peptidoglycan Recognition Proteins (Pglyrps) at the Ocular Surface: Bacterial Keratitis in Gene-Targeted Mice Deficient in Pglyrp-2, -3 and -4. PLOS ONE. 10. 9. e0137129. 10.1371/journal.pone.0137129. 1932-6203. 4558058. 26332373. 2015PLoSO..1037129G. free.
  94. Dabrowski. Alexander N.. Conrad. Claudia. Behrendt. Ulrike. Shrivastav. Anshu. Baal. Nelli. Wienhold. Sandra M.. Hackstein. Holger. N'Guessan. Philippe D.. Aly. Sahar. Reppe. Katrin. Suttorp. Norbert. 2019. Peptidoglycan Recognition Protein 2 Regulates Neutrophil Recruitment Into the Lungs After Streptococcus pneumoniae Infection. Frontiers in Microbiology. 10. 199. 10.3389/fmicb.2019.00199. 1664-302X. 6389715. 30837960. free.
  95. Dabrowski. Alexander N.. Shrivastav. Anshu. Conrad. Claudia. Komma. Kassandra. Weigel. Markus. Dietert. Kristina. Gruber. Achim D.. Bertrams. Wilhelm. Wilhelm. Jochen. Schmeck. Bernd. Reppe. Katrin. 2019. Peptidoglycan Recognition Protein 4 Limits Bacterial Clearance and Inflammation in Lungs by Control of the Gut Microbiota. Frontiers in Immunology. 10. 2106. 10.3389/fimmu.2019.02106. 1664-3224. 6763742. 31616404. free.
  96. Dziarski . Roman Dziarski . Roman. Park. Shin Yong. Kashyap. Des Raj. Dowd. Scot E.. Gupta. Dipika. 2016. Pglyrp-Regulated Gut Microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii Enhance and Alistipes finegoldii Attenuates Colitis in Mice. PLOS ONE. 11. 1. e0146162. 10.1371/journal.pone.0146162. 1932-6203. 4699708. 26727498. 2016PLoSO..1146162D. free.
  97. Banskar. Sunil. Detzner. Ashley A.. Juarez-Rodriguez. Maria D.. Hozo. Iztok. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. 15 December 2019. The Pglyrp1-Regulated Microbiome Enhances Experimental Allergic Asthma. Journal of Immunology. 203. 12. 3113–3125. 10.4049/jimmunol.1900711. 1550-6606. 31704882. 207942798. free.
  98. Laman. Jon D.. 't Hart. Bert A.. Power. Christopher. Dziarski . Roman Dziarski . Roman. July 2020. Bacterial Peptidoglycan as a Driver of Chronic Brain Inflammation. Trends in Molecular Medicine. 26. 7. 670–682. 10.1016/j.molmed.2019.11.006. 1471-499X. 32589935. 211835568.
  99. Jing. Xuefang. Zulfiqar. Fareeha. Park. Shin Yong. Núñez. Gabriel. Dziarski . Roman Dziarski . Roman. Gupta. Dipika. 2014-09-15. Peptidoglycan recognition protein 3 and Nod2 synergistically protect mice from dextran sodium sulfate-induced colitis. Journal of Immunology. 193. 6. 3055–3069. 10.4049/jimmunol.1301548. 1550-6606. 4157132. 25114103.
  100. Zenhom. Marwa. Hyder. Ayman. de Vrese. Michael. Heller. Knut J.. Roeder. Thomas. Schrezenmeir. Jürgen. April 2012. Peptidoglycan recognition protein 3 (PglyRP3) has an anti-inflammatory role in intestinal epithelial cells. Immunobiology. 217. 4. 412–419. 10.1016/j.imbio.2011.10.013. 1878-3279. 22099350.
  101. Park. Shin Yong. Gupta. Dipika. Kim. Chang H.. Dziarski . Roman Dziarski . Roman. 2011. Differential effects of peptidoglycan recognition proteins on experimental atopic and contact dermatitis mediated by Treg and Th17 cells. PLOS ONE. 6. 9. e24961. 10.1371/journal.pone.0024961. 1932-6203. 3174980. 21949809. 2011PLoSO...624961P. free.
  102. Skerry. Ciaran. Goldman. William E.. Carbonetti. Nicholas H.. February 2019. Peptidoglycan Recognition Protein 4 Suppresses Early Inflammatory Responses to Bordetella pertussis and Contributes to Sphingosine-1-Phosphate Receptor Agonist-Mediated Disease Attenuation. Infection and Immunity. 87. 2. 10.1128/IAI.00601-18. 1098-5522. 6346131. 30510103.
  103. Park. Shin Yong. Gupta. Dipika. Hurwich. Risa. Kim. Chang H.. Dziarski . Roman Dziarski . Roman. 2011-12-01. Peptidoglycan recognition protein Pglyrp2 protects mice from psoriasis-like skin inflammation by promoting regulatory T cells and limiting Th17 responses. Journal of Immunology. 187. 11. 5813–5823. 10.4049/jimmunol.1101068. 1550-6606. 3221838. 22048773.
  104. Saha. Sukumar. Qi. Jin. Wang. Shiyong. Wang. Minhui. Li. Xinna. Kim. Yun-Gi. Núñez. Gabriel. Gupta. Dipika. Dziarski . Roman Dziarski . Roman. 2009-02-19. PGLYRP-2 and Nod2 are both required for peptidoglycan-induced arthritis and local inflammation. Cell Host & Microbe. 5. 2. 137–150. 10.1016/j.chom.2008.12.010. 1934-6069. 2671207. 19218085.
  105. Arentsen . Tim . Khalid . Roksana . Qian . Yu . Diaz Heijtz . Rochellys . January 2018 . Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice . Brain, Behavior, and Immunity . 67 . 345–354 . 10.1016/j.bbi.2017.09.014 . 1090-2139 . 28951252 . 27790787 . free.
  106. Schnell . Alexandra . Huang . Linglin . Regan . Brianna M. L. . Singh . Vasundhara . Vonficht . Dominik . Bollhagen . Alina . Wang . Mona . Hou . Yu . Bod . Lloyd . Sobel . Raymond A. . Chihara . Norio . Madi . Asaf . Anderson . Ana C. . Regev . Aviv . Kuchroo . Vijay K. . 2023-10-12 . Targeting PGLYRP1 promotes antitumor immunity while inhibiting autoimmune neuroinflammation . Nature Immunology . 1–13 . en . 10.1038/s41590-023-01645-4 . 37828379 . 263963953 . 1529-2908. 10864036 .
  107. Read. Christine B.. Kuijper. Joseph L.. Hjorth. Siv A.. Heipel. Mark D.. Tang. Xiaoting. Fleetwood. Andrew J.. Dantzler. Jeffrey L.. Grell. Susanne N.. Kastrup. Jesper. Wang. Camilla. Brandt. Cameron S.. 2015-02-15. Cutting Edge: identification of neutrophil PGLYRP1 as a ligand for TREM-1. Journal of Immunology. 194. 4. 1417–1421. 10.4049/jimmunol.1402303. 1550-6606. 4319313. 25595774.
  108. Sashchenko. Lidia P.. Dukhanina. Elena A.. Yashin. Denis V.. Shatalov. Yurii V.. Romanova. Elena A.. Korobko. Elena V.. Demin. Alexander V.. Lukyanova. Tamara I.. Kabanova. Olga D.. Khaidukov. Sergei V.. Kiselev. Sergei L.. 2004-01-16. Peptidoglycan recognition protein tag7 forms a cytotoxic complex with heat shock protein 70 in solution and in lymphocytes. The Journal of Biological Chemistry. 279. 3. 2117–2124. 10.1074/jbc.M307513200. 0021-9258. 14585845. 23485070. free.
  109. Sashchenko. Lidia P.. Dukhanina. Elena A.. Shatalov. Yury V.. Yashin. Denis V.. Lukyanova. Tamara I.. Kabanova. Olga D.. Romanova. Elena A.. Khaidukov. Sergei V.. Galkin. Alexander V.. Gnuchev. Nikolai V.. Georgiev. Georgii P.. 2007-09-15. Cytotoxic T lymphocytes carrying a pattern recognition protein Tag7 can detect evasive, HLA-negative but Hsp70-exposing tumor cells, thereby ensuring FasL/Fas-mediated contact killing. Blood. en. 110. 6. 1997–2004. 10.1182/blood-2006-12-064444. 17551095. 14869208 . 0006-4971.
  110. Dukhanina. Elena A.. Kabanova. Olga D.. Lukyanova. Tamara I.. Shatalov. Yury V.. Yashin. Denis V.. Romanova. Elena A.. Gnuchev. Nikolai V.. Galkin. Alexander V.. Georgiev. Georgii P.. Sashchenko. Lidia P.. 2009-08-18. Opposite roles of metastasin (S100A4) in two potentially tumoricidal mechanisms involving human lymphocyte protein Tag7 and Hsp70. Proceedings of the National Academy of Sciences of the United States of America. 106. 33. 13963–13967. 10.1073/pnas.0900116106. 1091-6490. 2729003. 19666596. 2009PNAS..10613963D. free.
  111. Yashin. Denis V.. Dukhanina. Elena A.. Kabanova. Olga D.. Romanova. Elena A.. Lukyanova. Tamara I.. Tonevitskii. Alexsander G.. Raynes. Deborah A.. Gnuchev. Nikolai V.. Guerriero. Vince. Georgiev. Georgii P.. Sashchenko. Lidia P.. 2011-03-25. The heat shock-binding protein (HspBP1) protects cells against the cytotoxic action of the Tag7-Hsp70 complex. The Journal of Biological Chemistry. 286. 12. 10258–10264. 10.1074/jbc.M110.163436. 1083-351X. 3060480. 21247889. free.
  112. Yashin. Denis V.. Ivanova. Olga K.. Soshnikova. Natalia V.. Sheludchenkov. Anton A.. Romanova. Elena A.. Dukhanina. Elena A.. Tonevitsky. Alexander G.. Gnuchev. Nikolai V.. Gabibov. Alexander G.. Georgiev. Georgii P.. Sashchenko. Lidia P.. 2015-08-28. Tag7 (PGLYRP1) in Complex with Hsp70 Induces Alternative Cytotoxic Processes in Tumor Cells via TNFR1 Receptor. Journal of Biological Chemistry. en. 290. 35. 21724–21731. 10.1074/jbc.M115.639732. 0021-9258. 4571894. 26183779. free.
  113. Yashin. Denis V.. Romanova. Elena A.. Ivanova. Olga K.. Sashchenko. Lidia P.. April 2016. The Tag7-Hsp70 cytotoxic complex induces tumor cell necroptosis via permeabilisation of lysosomes and mitochondria. Biochimie. 123. 32–36. 10.1016/j.biochi.2016.01.007. 1638-6183. 26796882.
  114. Romanova. Elena A.. Sharapova. Tatiana N.. Telegin. Georgii B.. Minakov. Alexei N.. Chernov. Alexander S.. Ivanova. Olga K.. Bychkov. Maxim L.. Sashchenko. Lidia P.. Yashin. Denis V.. 20 February 2020. A 12-mer Peptide of Tag7 (PGLYRP1) Forms a Cytotoxic Complex with Hsp70 and Inhibits TNF-Alpha Induced Cell Death. Cells. 9. 2. 488. 10.3390/cells9020488. 2073-4409. 7072780. 32093269. free.
  115. Sharapova . Tatiana N. . Romanova . Elena A. . Chernov . Aleksandr S. . Minakov . Alexey N. . Kazakov . Vitaly A. . Kudriaeva . Anna A. . Belogurov . Alexey A. . Ivanova . Olga K. . Gabibov . Alexander G. . Telegin . Georgii B. . Yashin . Denis V. . Sashchenko . Lidia P. . 2021-10-18 . Protein PGLYRP1/Tag7 Peptides Decrease the Proinflammatory Response in Human Blood Cells and Mouse Model of Diffuse Alveolar Damage of Lung through Blockage of the TREM-1 and TNFR1 Receptors . International Journal of Molecular Sciences . en . 22 . 20 . 11213 . 10.3390/ijms222011213 . 1422-0067 . 8538247 . 34681871 . free .
  116. Telegin . Georgii B. . Chernov . Aleksandr S. . Kazakov . Vitaly A. . Romanova . Elena A. . Sharapova . Tatiana N. . Yashin . Denis V. . Gabibov . Alexander G. . Sashchenko . Lidia P. . 2021-06-07 . A 8-mer Peptide of PGLYRP1/Tag7 Innate Immunity Protein Binds to TNFR1 Receptor and Inhibits TNFα-Induced Cytotoxic Effect and Inflammation . Frontiers in Immunology . 12 . 10.3389/fimmu.2021.622471 . 1664-3224 . 8215708 . 34163464 . free .
  117. Zulfiqar. Fareeha. Hozo. Iztok. Rangarajan. Sneha. Mariuzza. Roy A.. Dziarski . Roman Dziarski . Roman. Gupta. Dipika. 2013. Genetic Association of Peptidoglycan Recognition Protein Variants with Inflammatory Bowel Disease. PLOS ONE. 8. 6. e67393. 10.1371/journal.pone.0067393. 1932-6203. 3686734. 23840689. 2013PLoSO...867393Z. free.
  118. Nkya. Siana. Mwita. Liberata. Mgaya. Josephine. Kumburu. Happiness. van Zwetselaar. Marco. Menzel. Stephan. Mazandu. Gaston Kuzamunu. Sangeda. Raphael. Chimusa. Emile. Makani. Julie. 5 June 2020. Identifying genetic variants and pathways associated with extreme levels of fetal hemoglobin in sickle cell disease in Tanzania. BMC Medical Genetics. 21. 1. 125. 10.1186/s12881-020-01059-1. 1471-2350. 7275552. 32503527 . free .
  119. Ng. David. Hu. Nan. Hu. Ying. Wang. Chaoyu. Giffen. Carol. Tang. Ze-Zhong. Han. Xiao-You. Yang. Howard H.. Lee. Maxwell P.. Goldstein. Alisa M.. Taylor. Philip R.. 2008-10-01. Replication of a genome-wide case-control study of esophageal squamous cell carcinoma. International Journal of Cancer. 123. 7. 1610–1615. 10.1002/ijc.23682. 1097-0215. 2552411. 18649358.
  120. Goldman. Samuel M.. Kamel. Freya. Ross. G. Webster. Jewell. Sarah A.. Marras. Connie. Hoppin. Jane A.. Umbach. David M.. Bhudhikanok. Grace S.. Meng. Cheryl. Korell. Monica. Comyns. Kathleen. August 2014. Peptidoglycan recognition protein genes and risk of Parkinson's disease. Movement Disorders. 29. 9. 1171–1180. 10.1002/mds.25895. 1531-8257. 4777298. 24838182.
  121. Gorecki . Anastazja M. . Bakeberg . Megan C. . Theunissen . Frances . Kenna . Jade E. . Hoes . Madison E. . Pfaff . Abigail L. . Akkari . P. Anthony . Dunlop . Sarah A. . Kõks . Sulev . Mastaglia . Frank L. . Anderton . Ryan S. . 2020-11-17 . Single Nucleotide Polymorphisms Associated With Gut Homeostasis Influence Risk and Age-at-Onset of Parkinson's Disease . Frontiers in Aging Neuroscience . 12 . 10.3389/fnagi.2020.603849 . 1663-4365 . 7718032 . 33328979 . free .
  122. Luan . Mengting . Jin . Jianing . Wang . Ying . Li . Xiaoyuan . Xie . Anmu . April 2022 . Association of PGLYRP2 gene polymorphism and sporadic Parkinson's disease in northern Chinese Han population . Neuroscience Letters . en . 775 . 136547 . 10.1016/j.neulet.2022.136547. 35218888 . 247028433 .
  123. Sun. Chao. Mathur. Punam. Dupuis. Josée. Tizard. Rich. Ticho. Barry. Crowell. Tom. Gardner. Humphrey. Bowcock. Anne M.. Carulli. John. March 2006. Peptidoglycan recognition proteins Pglyrp3 and Pglyrp4 are encoded from the epidermal differentiation complex and are candidate genes for the Psors4 locus on chromosome 1q21. Human Genetics. 119. 1–2. 113–125. 10.1007/s00439-005-0115-8. 0340-6717. 16362825. 31486449.
  124. Kainu. Kati. Kivinen. Katja. Zucchelli. Marco. Suomela. Sari. Kere. Juha. Inerot. Annica. Baker. Barbara S.. Powles. Anne V.. Fry. Lionel. Samuelsson. Lena. Saarialho-Kere. Ulpu. February 2009. Association of psoriasis to PGLYRP and SPRR genes at PSORS4 locus on 1q shows heterogeneity between Finnish, Swedish and Irish families. Experimental Dermatology. 18. 2. 109–115. 10.1111/j.1600-0625.2008.00769.x. 1600-0625. 18643845. 5771478.
  125. Igartua. Catherine. Davenport. Emily R.. Gilad. Yoav. Nicolae. Dan L.. Pinto. Jayant. Ober. Carole. 1 February 2017. Host genetic variation in mucosal immunity pathways influences the upper airway microbiome. Microbiome. 5. 1. 16. 10.1186/s40168-016-0227-5. 2049-2618. 5286564. 28143570 . free .
  126. Zhang. Lei. Luo. Min. Yang. Hongying. Zhu. Shaoyan. Cheng. Xianliang. Qing. Chen. 2019-02-20. Next-generation sequencing-based genomic profiling analysis reveals novel mutations for clinical diagnosis in Chinese primary epithelial ovarian cancer patients. Journal of Ovarian Research. 12. 1. 19. 10.1186/s13048-019-0494-4. 1757-2215. 6381667. 30786925 . free .
  127. Rohatgi. Anand. Ayers. Colby R.. Khera. Amit. McGuire. Darren K.. Das. Sandeep R.. Matulevicius. Susan. Timaran. Carlos H.. Rosero. Eric B.. de Lemos. James A.. April 2009. The association between peptidoglycan recognition protein-1 and coronary and peripheral atherosclerosis: Observations from the Dallas Heart Study. Atherosclerosis. 203. 2. 569–575. 10.1016/j.atherosclerosis.2008.07.015. 1879-1484. 18774573.
  128. Brownell. Nicholas K.. Khera. Amit. de Lemos. James A.. Ayers. Colby R.. Rohatgi. Anand. 17 May 2016. Association Between Peptidoglycan Recognition Protein-1 and Incident Atherosclerotic Cardiovascular Disease Events: The Dallas Heart Study. Journal of the American College of Cardiology. 67. 19. 2310–2312. 10.1016/j.jacc.2016.02.063. 1558-3597. 27173041. free.
  129. Rathnayake . Nilminie . Gustafsson . Anders . Sorsa . Timo . Norhammar . Anna . Bostanci . Nagihan . September 2022 . Association of peptidoglycan recognition protein 1 to post‐myocardial infarction and periodontal inflammation: A subgroup report from the PAROKRANK (Periodontal Disease and the Relation to Myocardial Infarction) study . Journal of Periodontology . en . 93 . 9 . 1325–1335 . 10.1002/JPER.21-0595 . 0022-3492 . 9796725 . 35344208.
  130. Klimczak-Tomaniak. Dominika. Bouwens. Elke. Schuurman. Anne-Sophie. Akkerhuis. K. Martijn. Constantinescu. Alina. Brugts. Jasper. Westenbrink. B. Daan. van Ramshorst. Jan. Germans. Tjeerd. Pączek. Leszek. Umans. Victor. June 2020. Temporal patterns of macrophage- and neutrophil-related markers are associated with clinical outcome in heart failure patients. ESC Heart Failure. 7. 3. 1190–1200. 10.1002/ehf2.12678. 2055-5822. 7261550. 32196993.
  131. Han . Yanxin . Hua . Sha . Chen . Yanjia . Yang . Wenbo . Zhao . Weilin . Huang . Fanyi . Qiu . Zeping . Yang . Chendie . Jiang . Jie . Su . Xiuxiu . Yang . Ke . Jin . Wei . May 2021 . Circulating PGLYRP1 Levels as a Potential Biomarker for Coronary Artery Disease and Heart Failure . Journal of Cardiovascular Pharmacology . en . 77 . 5 . 578–585 . 10.1097/FJC.0000000000000996 . 33760799 . 232356516 . 0160-2446.
  132. Jin . Yao . Huang . Hui . Shu . Xinyi . Liu . Zhuhui . Lu . Lin . Dai . Yang . Wu . Zhijun . December 2021 . Peptidoglycan Recognition Protein 1 Attenuates Atherosclerosis by Suppressing Endothelial Cell Adhesion . Journal of Cardiovascular Pharmacology . en . 78 . 4 . 615–621 . 10.1097/FJC.0000000000001100 . 34269701 . 235962339 . 0160-2446.
  133. Zhang. Junli. Cheng. Yuelei. Duan. Minmin. Qi. Nannan. Liu. Jian. May 2017. Unveiling differentially expressed genes upon regulation of transcription factors in sepsis. 3 Biotech. 7. 1. 46. 10.1007/s13205-017-0713-x. 2190-572X. 5428098. 28444588.
  134. Molyneaux. Philip L.. Willis-Owen. Saffron A. G.. Cox. Michael J.. James. Phillip. Cowman. Steven. Loebinger. Michael. Blanchard. Andrew. Edwards. Lindsay M.. Stock. Carmel. Daccord. Cécile. Renzoni. Elisabetta A.. 15 June 2017. Host-Microbial Interactions in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine. 195. 12. 1640–1650. 10.1164/rccm.201607-1408OC. 1535-4970. 5476909. 28085486.
  135. Kasaian. M. T.. Lee. J.. Brennan. A.. Danto. S. I.. Black. K. E.. Fitz. L.. Dixon. A. E.. July 2018. Proteomic analysis of serum and sputum analytes distinguishes controlled and poorly controlled asthmatics. Clinical and Experimental Allergy . 48. 7. 814–824. 10.1111/cea.13151. 1365-2222. 29665127. 4938216.
  136. Nylund. Karita M.. Ruokonen. Hellevi. Sorsa. Timo. Heikkinen. Anna Maria. Meurman. Jukka H.. Ortiz. Fernanda. Tervahartiala. Taina. Furuholm. Jussi. Bostanci. Nagihan. January 2018. Association of the salivary triggering receptor expressed on myeloid cells/its ligand peptidoglycan recognition protein 1 axis with oral inflammation in kidney disease. Journal of Periodontology. 89. 1. 117–129. 10.1902/jop.2017.170218. 1943-3670. 28846062. 21830535.
  137. Luo. Qing. Li. Xue. Zhang. Lu. Yao. Fangyi. Deng. Zhen. Qing. Cheng. Su. Rigu. Xu. Jianqing. Guo. Yang. Huang. Zikun. Li. Junming. January 2019. Serum PGLYRP‑1 is a highly discriminatory biomarker for the diagnosis of rheumatoid arthritis. Molecular Medicine Reports. 19. 1. 589–594. 10.3892/mmr.2018.9632. 1791-3004. 30431075. free.
  138. Silbereisen. A.. Hallak. A. K.. Nascimento. G. G.. Sorsa. T.. Belibasakis. G. N.. Lopez. R.. Bostanci. N.. October 2019. Regulation of PGLYRP1 and TREM-1 during Progression and Resolution of Gingival Inflammation. JDR Clinical and Translational Research. 4. 4. 352–359. 10.1177/2380084419844937. 2380-0852. 31013451. 129941967.
  139. Raivisto. T.. Heikkinen. A. M.. Silbereisen. A.. Kovanen. L.. Ruokonen. H.. Tervahartiala. T.. Haukka. J.. Sorsa. T.. Bostanci. N.. October 2020. Regulation of Salivary Peptidoglycan Recognition Protein 1 in Adolescents. JDR Clinical and Translational Research. 5. 4. 332–341. 10.1177/2380084419894287. 2380-0852. 31860804. 209434091.
  140. Yucel. Zeynep Pinar Keles. Silbereisen. Angelika. Emingil. Gulnur. Tokgoz. Yavuz. Kose. Timur. Sorsa. Timo. Tsilingaridis. Georgios. Bostanci. Nagihan. October 2020. Salivary biomarkers in the context of gingival inflammation in children with cystic fibrosis. Journal of Periodontology. 91. 10. 1339–1347. 10.1002/JPER.19-0415. 1943-3670. 32100289. 10138/327022. 211523360. free.
  141. Karsiyaka Hendek. Meltem. Kisa. Ucler. Olgun. Ebru. January 2020. The effect of smoking on gingival crevicular fluid peptidoglycan recognition protein-1 level following initial periodontal therapy in chronic periodontitis. Oral Diseases. 26. 1. 166–172. 10.1111/odi.13207. 1601-0825. 31587460. 203850763.
  142. Teixeira. Mayla K. S.. Lira-Junior. Ronaldo. Lourenço. Eduardo José Veras. Telles. Daniel Moraes. Boström. Elisabeth A.. Figueredo. Carlos Marcelo. Bostanci. Nagihan. May 2020. The modulation of the TREM-1/PGLYRP1/MMP-8 axis in peri-implant diseases. Clinical Oral Investigations. 24. 5. 1837–1844. 10.1007/s00784-019-03047-z. 1436-3771. 31444693. 201283050. free.
  143. Inanc . Nevsun . Mumcu . Gonca . Can . Meryem . Yay . Meral . Silbereisen . Angelika . Manoil . Daniel . Direskeneli . Haner . Bostanci . Nagihan . 2021-02-03 . Elevated serum TREM-1 is associated with periodontitis and disease activity in rheumatoid arthritis . Scientific Reports . en . 11 . 1 . 2888 . 10.1038/s41598-021-82335-9 . 2045-2322 . 7859204 . 33536478. 2021NatSR..11.2888I .
  144. Silbereisen . Angelika . Lira‐Junior . Ronaldo . Åkerman . Sigvard . Klinge . Björn . Boström . Elisabeth A. . Bostanci . Nagihan . November 2023 . Association of salivary TREM‐1 and PGLYRP1 inflammatory markers with non‐communicable diseases . Journal of Clinical Periodontology . en . 50 . 11 . 1467–1475 . 10.1111/jcpe.13858 . 37524498 . 260349050 . 0303-6979. free .
  145. Yang. Zhanyu. Ni. Jiangdong. Kuang. Letian. Gao. Yongquan. Tao. Shibin. 2020-09-11. Identification of genes and pathways associated with subchondral bone in osteoarthritis via bioinformatic analysis. Medicine. 99. 37. e22142. 10.1097/MD.0000000000022142. 1536-5964. 7489699. 32925767.
  146. Ortiz. Fernanda. Nylund. Karita M.. Ruokonen. Hellevi. Meurman. Jukka H.. Furuholm. Jussi. Bostanci. Nagihan. Sorsa. Timo. 2020-08-04. Salivary Biomarkers of Oral Inflammation Are Associated With Cardiovascular Events and Death Among Kidney Transplant Patients. Transplantation Proceedings. 52. 10. 3231–3235. 10.1016/j.transproceed.2020.07.007. 1873-2623. 32768288. 225451024.
  147. Soomro . Sanam . Venkateswaran . Suresh . Vanarsa . Kamala . Kharboutli . Marwa . Nidhi . Malavika . Susarla . Ramya . Zhang . Ting . Sasidharan . Prashanth . Lee . Kyung Hyun . Rosh . Joel . Markowitz . James . Pedroza . Claudia . Denson . Lee A. . Hyams . Jeffrey . Kugathasan . Subra . 2021-06-28 . Predicting disease course in ulcerative colitis using stool proteins identified through an aptamer-based screen . Nature Communications . en . 12 . 1 . 3989 . 10.1038/s41467-021-24235-0 . 2041-1723 . 8239008 . 34183667. 2021NatCo..12.3989S .
  148. Glickman . Jacob W. . Dubin . Celina . Renert-Yuval . Yael . Dahabreh . Dante . Kimmel . Grace W. . Auyeung . Kelsey . Estrada . Yeriel D. . Singer . Giselle . Krueger . James G. . Pavel . Ana B. . Guttman-Yassky . Emma . Emma Guttman-Yassky . 2020-05-04 . Cross-sectional study of blood biomarkers of patients with moderate to severe alopecia areata reveals systemic immune and cardiovascular biomarker dysregulation . Journal of the American Academy of Dermatology . 84 . 2 . 370–380 . 10.1016/j.jaad.2020.04.138 . 1097-6787 . 32376430 . 218532915.
  149. Yang. Shuting. Cao. Chuqing. Xie. Zhiguo. Zhou. Zhiguang. March 2020. Analysis of potential hub genes involved in the pathogenesis of Chinese type 1 diabetic patients. Annals of Translational Medicine. 8. 6. 295. 10.21037/atm.2020.02.171. 2305-5839. 7186604. 32355739 . free .
  150. Arenius. Ilona. Ruokonen. Hellevi. Ortiz. Fernanda. Furuholm. Jussi. Välimaa. Hannamari. Bostanci. Nagihan. Eskola. Maija. Maria Heikkinen. Anna. Meurman. Jukka H.. Sorsa. Timo. Nylund. Karita. July 2020. The relationship between oral diseases and infectious complications in patients under dialysis. Oral Diseases. 26. 5. 1045–1052. 10.1111/odi.13296. 1601-0825. 32026534. 10138/325947. 211045697. free.
  151. Guo. Chao. Li. Zhenling. 2019-12-05. Bioinformatics Analysis of Key Genes and Pathways Associated with Thrombosis in Essential Thrombocythemia. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 25. 9262–9271. 10.12659/MSM.918719. 1643-3750. 6911306. 31801935.
  152. Grande. Giuseppe. Vincenzoni. Federica. Milardi. Domenico. Pompa. Giuseppina. Ricciardi. Domenico. Fruscella. Erika. Mancini. Francesca. Pontecorvi. Alfredo. Castagnola. Massimo. Marana. Riccardo. 2017. Cervical mucus proteome in endometriosis. Clinical Proteomics. 14. 7. 10.1186/s12014-017-9142-4. 1542-6416. 5290661. 28174513 . free .
  153. Turturice . Benjamin A . Theorell . Juliana . Koenig . Mary Dawn . Tussing-Humphreys . Lisa . Gold . Diane R . Litonjua . Augusto A . Oken . Emily . Rifas-Shiman . Sheryl L . Perkins . David L . Finn . Patricia W . 2021-02-10 . Perinatal granulopoiesis and risk of pediatric asthma . eLife . en . 10 . 10.7554/eLife.63745 . 2050-084X . 7889076 . 33565964 . free .
  154. Li . Hui . Meng . Defang . Jia . Jieting . Wei . Hua . December 2021 . PGLYRP2 as a novel biomarker for the activity and lipid metabolism of systemic lupus erythematosus . Lipids in Health and Disease . en . 20 . 1 . 95 . 10.1186/s12944-021-01515-8 . 1476-511X . 8404349 . 34461924 . free .
  155. Huang . Fei . Liu . Xu . Cheng . Yongjing . Sun . Xiaolin . Li . Yingni . Zhao . Jing . Cao . Di . Wu . Qin . Pan . Xiaoli . Deng . Haiteng . Tian . Mei . Li . Zhanguo . 2021-08-31 . Antibody to peptidoglycan recognition protein (PGLYRP)-2 as a novel biomarker in rheumatoid arthritis . Clinical and Experimental Rheumatology . en . 39 . 5 . 988–994 . 10.55563/clinexprheumatol/vlvlqu . 33427621 . 231575423 . 1593-098X. free .
  156. Achkar . Jacqueline M. . Cortes . Laetitia . Croteau . Pascal . Yanofsky . Corey . Mentinova . Marija . Rajotte . Isabelle . Schirm . Michael . Zhou . Yiyong . Junqueira-Kipnis . Ana Paula . Kasprowicz . Victoria O. . Larsen . Michelle . September 2015 . Host Protein Biomarkers Identify Active Tuberculosis in HIV Uninfected and Co-infected Individuals . eBioMedicine . 2 . 9 . 1160–1168 . 10.1016/j.ebiom.2015.07.039 . 2352-3964 . 4588417 . 26501113.
  157. Chen . Jing . Han . Yu‐Shuai . Yi . Wen‐Jing . Huang . Huai . Li . Zhi‐Bin . Shi . Li‐Ying . Wei . Li‐Liang . Yu . Yi . Jiang . Ting‐Ting . Li . Ji‐Cheng . November 2020 . Serum sCD14, PGLYRP2 and FGA as potential biomarkers for multidrug‐resistant tuberculosis based on data‐independent acquisition and targeted proteomics . Journal of Cellular and Molecular Medicine . en . 24 . 21 . 12537–12549 . 10.1111/jcmm.15796 . 1582-1838 . 7686995 . 32967043.
  158. Zhou. Yong. Qin. Shizhen. Sun. Mingjuan. Tang. Li. Yan. Xiaowei. Kim. Taek-Kyun. Caballero. Juan. Glusman. Gustavo. Brunkow. Mary E.. Soloski. Mark J.. Rebman. Alison W.. 3 January 2020. Measurement of Organ-Specific and Acute-Phase Blood Protein Levels in Early Lyme Disease. Journal of Proteome Research. 19. 1. 346–359. 10.1021/acs.jproteome.9b00569. 1535-3907. 31618575. 7981273.
  159. Yang. Zongyi. Feng. Jia. Xiao. Li. Chen. Xi. Yao. Yuanfei. Li. Yiqun. Tang. Yu. Zhang. Shuai. Lu. Min. Qian. Yu. Wu. Hongjin. May 2020. Tumor-Derived Peptidoglycan Recognition Protein 2 Predicts Survival and Antitumor Immune Responses in Hepatocellular Carcinoma. Hepatology. 71. 5. 1626–1642. 10.1002/hep.30924. 1527-3350. 7318564. 31479523.
  160. Das. Apabrita Ayan. Choudhury. Kamalika Roy. Jagadeeshaprasad. M. G.. Kulkarni. Mahesh J.. Mondal. Prakash Chandra. Bandyopadhyay. Arun. 2020-06-30. Proteomic analysis detects deregulated reverse cholesterol transport in human subjects with ST-segment elevation myocardial infarction. Journal of Proteomics. 222. 103796. 10.1016/j.jprot.2020.103796. 1876-7737. 32376501. 218532507.
  161. Tsuchiya. M.. Asahi. N.. Suzuoki. F.. Ashida. M.. Matsuura. S.. September 1996. Detection of peptidoglycan and beta-glucan with silkworm larvae plasma test. FEMS Immunology and Medical Microbiology. 15. 2–3. 129–134. 10.1111/j.1574-695X.1996.tb00063.x. 0928-8244. 8880138. free.
  162. Kobayashi. T.. Tani. T.. Yokota. T.. Kodama. M.. May 2000. Detection of peptidoglycan in human plasma using the silkworm larvae plasma test. FEMS Immunology and Medical Microbiology. 28. 1. 49–53. 10.1111/j.1574-695X.2000.tb01456.x. 0928-8244. 10767607. free.