Pentagramma mirificum explained

Pentagramma mirificum (Latin for "miraculous pentagram") is a star polygon on a sphere, composed of five great circle arcs, all of whose internal angles are right angles. This shape was described by John Napier in his 1614 book Mirifici Logarithmorum Canonis Descriptio (Description of the Admirable Table of Logarithms) along with rules that link the values of trigonometric functions of five parts of a right spherical triangle (two angles and three sides). The properties of pentagramma mirificum were studied, among others, by Carl Friedrich Gauss.[1]

Geometric properties

On a sphere, both the angles and the sides of a triangle (arcs of great circles) are measured as angles.

There are five right angles, each measuring

\pi/2,

at

A

,

B

,

C

,

D

, and

E.

There are ten arcs, each measuring

\pi/2:

PC

,

PE

,

QD

,

QA

,

RE

,

RB

,

SA

,

SC

,

TB

, and

TD.

In the spherical pentagon

PQRST

, every vertex is the pole of the opposite side. For instance, point

P

is the pole of equator

RS

, point

Q

— the pole of equator

ST

, etc.

At each vertex of pentagon

PQRST

, the external angle is equal in measure to the opposite side. For instance,

\angleAPT=\angleBPQ=RS,\angleBQP=\angleCQR=ST,

etc.

Napier's circles of spherical triangles

APT

,

BQP

,

CRQ

,

DSR

, and

ETS

are rotations of one another.

Gauss's formulas

Gauss introduced the notation

(\alpha, \beta, \gamma, \delta, \varepsilon) = (\tan^2 TP, \tan^2 PQ, \tan^2 QR, \tan^2 RS, \tan^2 ST).

The following identities hold, allowing the determination of any three of the above quantities from the two remaining ones:[2]

\begin1 + \alpha &= \gamma\delta &1 + \beta &= \delta\varepsilon &1 + \gamma &=\alpha \varepsilon \\1 + \delta &= \alpha\beta &1 + \varepsilon &= \beta\gamma.\end

Gauss proved the following "beautiful equality" (schöne Gleichung):[2]

\begin \alpha\beta\gamma\delta\varepsilon &=\; 3 + \alpha + \beta + \gamma + \delta + \varepsilon \\&=\; \sqrt.\end

It is satisfied, for instance, by numbers

(\alpha,\beta,\gamma,\delta,\varepsilon)=(9,2/3,2,5,1/3)

, whose product

\alpha\beta\gamma\delta\varepsilon

is equal to

20

.

Proof of the first part of the equality:

\begin{align} \alpha\beta\gamma\delta\varepsilon&=\alpha\beta\gamma\left(

1+\alpha\right)\left(
\gamma
1+\gamma
\alpha

\right)=\beta(1+\alpha)(1+\gamma)\\ &=\beta+\alpha\beta+\beta\gamma+\alpha\beta\gamma=\beta+(1+\delta)+(1+\varepsilon)+\alpha(1+\varepsilon)\\ &=2+\alpha+\beta+\delta+\varepsilon+1+\gamma\\ &=3+\alpha+\beta+\gamma+\delta+\varepsilon \end{align}

Proof of the second part of the equality:

\begin{align} \alpha\beta\gamma\delta\varepsilon&=\sqrt{\alpha2\beta2\gamma2\delta2\varepsilon2}\\ &=\sqrt{\gamma\delta\delta\varepsilon\varepsilon\alpha\alpha\beta\beta\gamma}\\ &=\sqrt{(1+\alpha)(1+\beta)(1+\gamma)(1+\delta)(1+\varepsilon)} \end{align}

From Gauss comes also the formula[2]

(1+i\sqrt)(1+i\sqrt)(1+i\sqrt)(1+i\sqrt)(1+i\sqrt) = \alpha\beta\gamma\delta\varepsilon e^,where

APQRST=2\pi-(|\overset{\frown}{PQ}|+|\overset{\frown}{QR}|+|\overset{\frown}{RS}|+|\overset{\frown}{ST}|+|\overset{\frown}{TP}|)

is the area of pentagon

PQRST

.

Gnomonic projection

The image of spherical pentagon

PQRST

in the gnomonic projection (a projection from the centre of the sphere) onto any plane tangent to the sphere is a rectilinear pentagon. Its five vertices

P'Q'R'S'T'

unambiguously determine a conic section; in this case — an ellipse. Gauss showed that the altitudes of pentagram

P'Q'R'S'T'

(lines passing through vertices and perpendicular to opposite sides) cross in one point

O'

, which is the image of the point of tangency of the plane to sphere.

Arthur Cayley observed that, if we set the origin of a Cartesian coordinate system in point

O'

, then the coordinates of vertices

P'Q'R'S'T'

:

(x1,y1),\ldots,

(x5,y5)

satisfy the equalities

x1x4+y1y4=

x2x5+y2y5=

x3x1+y3y1=

x4x2+y4y2=

x5x3+y5y3=-\rho2

, where

\rho

is the length of the radius of the sphere.[3]

Notes and References

  1. Book: Gauss, Carl Friedrich . https://www.math.uni-bielefeld.de/~sek/cluster/pentagramma/ . Pentagramma mirificum . Werke, Band III: Analysis . Königliche Gesellschaft der Wissenschaften . Göttingen . Carl Friedrich Gauss . 481–490 . 1866.
  2. Frieze patterns . Acta Arithmetica . H. S. M. . Coxeter . Harold Scott MacDonald Coxeter . 18 . 297–310 . 1971 . 10.4064/aa-18-1-297-310. free .
  3. On Gauss's pentagramma mirificum . The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science . Arthur . Cayley . Arthur Cayley . 42 . 280 . 311–312 . 1871 . 10.1080/14786447108640572.