Pascal's simplex explained

In mathematics, Pascal's simplex is a generalisation of Pascal's triangle into arbitrary number of dimensions, based on the multinomial theorem.

Generic Pascal's m-simplex

Let m be a number of terms of a polynomial and n be a power the polynomial is raised to.

Let m denote a Pascal's m-simplex. Each Pascal's m-simplex is a semi-infinite object, which consists of an infinite series of its components.

Let denote its nth component, itself a finite -simplex with the edge length n, with a notational equivalent

m-1
\vartriangle
n
.

nth component

m
\wedge
n

=

m-1
\vartriangle
n
consists of the coefficients of multinomial expansion of a polynomial with m terms raised to the power of n:
n=\sum
|x|
|k|=n

{\binom{n}{k}xk};  x\inRm,k\inN

m
0,n\inN

0,m\inN

where
m{x
style|x|=\sum
i},|k|=\sum
ki
i
}.

Example for ⋀4

Pascal's 4-simplex, sliced along the k4. All points of the same color belong to the same nth component, from red (for) to blue (for).

Specific Pascal's simplices

Pascal's 1-simplex

1 is not known by any special name.

nth component

1
\wedge
n

=

0
\vartriangle
n
(a point) is the coefficient of multinomial expansion of a polynomial with 1 term raised to the power of n:
n
(x
1)

=

\sum
k1=n

{n\choosek1}

k1
x
1

;  k1,n\inN0

Arrangement of
0
\vartriangle
n

style{n\choosen}

which equals 1 for all n.

Pascal's 2-simplex

\wedge2

is known as Pascal's triangle .

nth component

2
\wedge
n

=

1
\vartriangle
n
(a line) consists of the coefficients of binomial expansion of a polynomial with 2 terms raised to the power of n:

(x1+

n
x
2)

=

\sum
k1+k2=n

{n\choosek1,k2}

k1
x
1
k2
x
2

;  k1,k2,n\inN0

Arrangement of
1
\vartriangle
n

style{n\choosen,0},{n\choosen-1,1},,{n\choose1,n-1},{n\choose0,n}

Pascal's 3-simplex

\wedge3

is known as Pascal's tetrahedron .

nth component

3
\wedge
n

=

2
\vartriangle
n
(a triangle) consists of the coefficients of trinomial expansion of a polynomial with 3 terms raised to the power of n:

(x1+x2+

n
x
3)

=

\sum
k1+k2+k3=n

{n\choosek1,k2,k3}

k1
x
1
k2
x
2
k3
x
3

;  k1,k2,k3,n\inN0

Arrangement of
2
\vartriangle
n

\begin{align} style{n\choosen,0,0}&,style{n\choosen-1,1,0}, … … ,{n\choose1,n-1,0},{n\choose0,n,0}\\ style{n\choosen-1,0,1}&,style{n\choosen-2,1,1}, … … ,{n\choose0,n-1,1}\\ &\vdots\\ style{n\choose1,0,n-1}&,style{n\choose0,1,n-1}\\ style{n\choose0,0,n} \end{align}

Properties

Inheritance of components

m
\wedge
n

=

m-1
\vartriangle
n
is numerically equal to each -face (there is of them) of
m
\vartriangle
n

=

m+1
\wedge
n
, or:
m
\wedge
n

=

m-1
\vartriangle
n
m
\subset\vartriangle
n

=

m+1
\wedge
n

From this follows, that the whole

\wedgem

is -times included in

\wedgem+1

, or:

\wedgem\subset\wedgem+1

Example

\wedge1

\wedge2

\wedge3

\wedge4

m
\wedge
0
style="margin:0;padding:1ex;border:none;background:transparent;"> 1 
style="margin:0;padding:1ex;border:none;background:transparent;">   1
style="margin:0;padding:1ex;border:none;background:transparent;">   1
style="margin:0;padding:1ex;border:none;background:transparent;">   1
m
\wedge
1
style="margin:0;padding:1ex;border:none;background:transparent;"> 1 
style="margin:0;padding:1ex;border:none;background:transparent;">  1 1
style="margin:0;padding:1ex;border:none;background:transparent;">  1 1
   1
style="margin:0;padding:1ex;border:none;background:transparent;">  1 1        1
   1
m
\wedge
2
style="margin:0;padding:1ex;border:none;background:transparent;"> 1 
style="margin:0;padding:1ex;border:none;background:transparent;"> 1 2 1
style="margin:0;padding:1ex;border:none;background:transparent;"> 1 2 1
  2 2
   1
style="margin:0;padding:1ex;border:none;background:transparent;"> 1 2 1      2 2      1
  2 2        2
   1
m
\wedge
3
style="margin:0;padding:1ex;border:none;background:transparent;"> 1 
style="margin:0;padding:1ex;border:none;background:transparent;">1 3 3 1
style="margin:0;padding:1ex;border:none;background:transparent;">1 3 3 1
 3 6 3
  3 3
   1
style="margin:0;padding:1ex;border:none;background:transparent;">1 3 3 1    3 6 3    3 3    1
 3 6 3      6 6      3
  3 3        3
   1
For more terms in the above array refer to

Equality of sub-faces

Conversely,

m+1
\wedge
n

=

m
\vartriangle
n
is (-times bounded by
m-1
\vartriangle
n

=

m
\wedge
n
, or:
m+1
\wedge
n

=

m
\vartriangle
n

\supset

m-1
\vartriangle
n

=

m
\wedge
n

From this follows, that for given n, all i-faces are numerically equal in nth components of all Pascal's -simplices, or:

i+1
\wedge
n

=

i
\vartriangle
n

\subset

m>i
\vartriangle
n

=

m>i+1
\wedge
n

Example

The 3rd component (2-simplex) of Pascal's 3-simplex is bounded by 3 equal 1-faces (lines). Each 1-face (line) is bounded by 2 equal 0-faces (vertices):

2-simplex 1-faces of 2-simplex 0-faces of 1-face 1 3 3 1 1 . . . . . . 1 1 3 3 1 1 . . . . . . 1 3 6 3 3 . . . . 3 . . . 3 3 3 . . 3 . . 1 1 1 .

Also, for all m and all n:

1=

1
\wedge
n

=

0
\vartriangle
n

\subset

m-1
\vartriangle
n

=

m
\wedge
n

Number of coefficients

For the nth component (-simplex) of Pascal's m-simplex, the number of the coefficients of multinomial expansion it consists of is given by:

{(n-1)+(m-1)\choose(m-1)}+{n+(m-2)\choose(m-2)}={n+(m-1)\choose(m-1)}=\left(\binom{m}{n}\right),

(where the latter is the multichoose notation). We can see this either as a sum of the number of coefficients of an th component (-simplex) of Pascal's m-simplex with the number of coefficients of an nth component (-simplex) of Pascal's -simplex, or by a number of all possible partitions of an nth power among m exponents.

Example

Number of coefficients of nth component (-simplex) of Pascal's m-simplex
m-simplex nth component n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
1-simplex0-simplex1 1 1 1 1 1
2-simplex1-simplex1 2 3 4 5 6
3-simplex2-simplex1 3 6 10 15 21
4-simplex3-simplex1 4 10 20 35 56
5-simplex4-simplex1 5 15 35 70 126
6-simplex5-simplex1 6 21 56 126 252

The terms of this table comprise a Pascal triangle in the format of a symmetric Pascal matrix.

Symmetry

An nth component (-simplex) of Pascal's m-simplex has the (m!)-fold spatial symmetry.

Geometry

Orthogonal axes k1, ..., km in m-dimensional space, vertices of component at n on each axis, the tip at for .

Numeric construction

Wrapped nth power of a big number gives instantly the nth component of a Pascal's simplex.

\left|bdp

n=\sum
\right|
|k|=n

{\binom{n}{k}bdp

};\ \ b,d\in\mathbb,\ n\in\mathbb_0,\ k,p\in\mathbb_0^m,\ p:\ p_1=0, p_i=(n+1)^where

stylebdp=

dp1
(b
dpm
,,b

)\inNm,p

m{p
k={\sum
i

ki}}\inN0

.