In mathematics, Pascal's simplex is a generalisation of Pascal's triangle into arbitrary number of dimensions, based on the multinomial theorem.
Let m be a number of terms of a polynomial and n be a power the polynomial is raised to.
Let m denote a Pascal's m-simplex. Each Pascal's m-simplex is a semi-infinite object, which consists of an infinite series of its components.
Let denote its nth component, itself a finite -simplex with the edge length n, with a notational equivalent
m-1 | |
\vartriangle | |
n |
m | |
\wedge | |
n |
=
m-1 | |
\vartriangle | |
n |
n=\sum | |
|x| | |
|k|=n |
{\binom{n}{k}xk}; x\inRm, k\inN
m | |
0, n\inN |
0, m\inN
m{x | |
style|x|=\sum | |
i}, |k|=\sum |
ki | |
i |
Pascal's 4-simplex, sliced along the k4. All points of the same color belong to the same nth component, from red (for) to blue (for).
1 is not known by any special name.
1 | |
\wedge | |
n |
=
0 | |
\vartriangle | |
n |
n | |
(x | |
1) |
=
\sum | |
k1=n |
{n\choosek1}
k1 | |
x | |
1 |
; k1,n\inN0
0 | |
\vartriangle | |
n |
style{n\choosen}
\wedge2
2 | |
\wedge | |
n |
=
1 | |
\vartriangle | |
n |
(x1+
n | |
x | |
2) |
=
\sum | |
k1+k2=n |
{n\choosek1,k2}
k1 | |
x | |
1 |
k2 | |
x | |
2 |
; k1,k2,n\inN0
1 | |
\vartriangle | |
n |
style{n\choosen,0},{n\choosen-1,1}, … ,{n\choose1,n-1},{n\choose0,n}
\wedge3
3 | |
\wedge | |
n |
=
2 | |
\vartriangle | |
n |
(x1+x2+
n | |
x | |
3) |
=
\sum | |
k1+k2+k3=n |
{n\choosek1,k2,k3}
k1 | |
x | |
1 |
k2 | |
x | |
2 |
k3 | |
x | |
3 |
; k1,k2,k3,n\inN0
2 | |
\vartriangle | |
n |
\begin{align} style{n\choosen,0,0}&,style{n\choosen-1,1,0}, … … ,{n\choose1,n-1,0},{n\choose0,n,0}\\ style{n\choosen-1,0,1}&,style{n\choosen-2,1,1}, … … ,{n\choose0,n-1,1}\\ &\vdots\\ style{n\choose1,0,n-1}&,style{n\choose0,1,n-1}\\ style{n\choose0,0,n} \end{align}
m | |
\wedge | |
n |
=
m-1 | |
\vartriangle | |
n |
m | |
\vartriangle | |
n |
=
m+1 | |
\wedge | |
n |
m | |
\wedge | |
n |
=
m-1 | |
\vartriangle | |
n |
m | |
\subset \vartriangle | |
n |
=
m+1 | |
\wedge | |
n |
From this follows, that the whole
\wedgem
\wedgem+1
\wedgem\subset\wedgem+1
\wedge1 | \wedge2 | \wedge3 | \wedge4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
| style="margin:0;padding:1ex;border:none;background:transparent;"> 1 | style="margin:0;padding:1ex;border:none;background:transparent;"> 1 | style="margin:0;padding:1ex;border:none;background:transparent;"> 1 | style="margin:0;padding:1ex;border:none;background:transparent;"> 1 | |||||||
| style="margin:0;padding:1ex;border:none;background:transparent;"> 1 | style="margin:0;padding:1ex;border:none;background:transparent;"> 1 1 | style="margin:0;padding:1ex;border:none;background:transparent;"> 1 1 1 | style="margin:0;padding:1ex;border:none;background:transparent;"> 1 1 1 1 | |||||||
| style="margin:0;padding:1ex;border:none;background:transparent;"> 1 | style="margin:0;padding:1ex;border:none;background:transparent;"> 1 2 1 | style="margin:0;padding:1ex;border:none;background:transparent;"> 1 2 1 2 2 1 | style="margin:0;padding:1ex;border:none;background:transparent;"> 1 2 1 2 2 1 2 2 2 1 | |||||||
| style="margin:0;padding:1ex;border:none;background:transparent;"> 1 | style="margin:0;padding:1ex;border:none;background:transparent;">1 3 3 1 | style="margin:0;padding:1ex;border:none;background:transparent;">1 3 3 1 3 6 3 3 3 1 | style="margin:0;padding:1ex;border:none;background:transparent;">1 3 3 1 3 6 3 3 3 1 3 6 3 6 6 3 3 3 3 1 |
Conversely,
m+1 | |
\wedge | |
n |
=
m | |
\vartriangle | |
n |
m-1 | |
\vartriangle | |
n |
=
m | |
\wedge | |
n |
m+1 | |
\wedge | |
n |
=
m | |
\vartriangle | |
n |
\supset
m-1 | |
\vartriangle | |
n |
=
m | |
\wedge | |
n |
From this follows, that for given n, all i-faces are numerically equal in nth components of all Pascal's -simplices, or:
i+1 | |
\wedge | |
n |
=
i | |
\vartriangle | |
n |
\subset
m>i | |
\vartriangle | |
n |
=
m>i+1 | |
\wedge | |
n |
The 3rd component (2-simplex) of Pascal's 3-simplex is bounded by 3 equal 1-faces (lines). Each 1-face (line) is bounded by 2 equal 0-faces (vertices):
2-simplex 1-faces of 2-simplex 0-faces of 1-face 1 3 3 1 1 . . . . . . 1 1 3 3 1 1 . . . . . . 1 3 6 3 3 . . . . 3 . . . 3 3 3 . . 3 . . 1 1 1 .
Also, for all m and all n:
1=
1 | |
\wedge | |
n |
=
0 | |
\vartriangle | |
n |
\subset
m-1 | |
\vartriangle | |
n |
=
m | |
\wedge | |
n |
For the nth component (-simplex) of Pascal's m-simplex, the number of the coefficients of multinomial expansion it consists of is given by:
{(n-1)+(m-1)\choose(m-1)}+{n+(m-2)\choose(m-2)}={n+(m-1)\choose(m-1)}=\left(\binom{m}{n}\right),
m-simplex | nth component | n = 0 | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | |
---|---|---|---|---|---|---|---|---|
1-simplex | 0-simplex | 1 | 1 | 1 | 1 | 1 | 1 | |
2-simplex | 1-simplex | 1 | 2 | 3 | 4 | 5 | 6 | |
3-simplex | 2-simplex | 1 | 3 | 6 | 10 | 15 | 21 | |
4-simplex | 3-simplex | 1 | 4 | 10 | 20 | 35 | 56 | |
5-simplex | 4-simplex | 1 | 5 | 15 | 35 | 70 | 126 | |
6-simplex | 5-simplex | 1 | 6 | 21 | 56 | 126 | 252 |
The terms of this table comprise a Pascal triangle in the format of a symmetric Pascal matrix.
An nth component (-simplex) of Pascal's m-simplex has the (m!)-fold spatial symmetry.
Orthogonal axes k1, ..., km in m-dimensional space, vertices of component at n on each axis, the tip at for .
Wrapped nth power of a big number gives instantly the nth component of a Pascal's simplex.
\left|bdp
n=\sum | |
\right| | |
|k|=n |
{\binom{n}{k}bdp ⋅
stylebdp=
dp1 | |
(b |
dpm | |
, … ,b |
)\inNm, p ⋅
m{p | |
k={\sum | |
i |
ki}}\inN0