The gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general. Other fractional arguments can be approximated through efficient infinite products, infinite series, and recurrence relations.
For positive integer arguments, the gamma function coincides with the factorial. That is,
\Gamma(n)=(n-1)!,
and hence
\begin{align} \Gamma(1)&=1,\\ \Gamma(2)&=1,\\ \Gamma(3)&=2,\\ \Gamma(4)&=6,\\ \Gamma(5)&=24, \end{align}
and so on. For non-positive integers, the gamma function is not defined.
For positive half-integers, the function values are given exactly by
\Gamma\left(\tfrac{n}{2}\right)=\sqrt\pi
(n-2)!! | |||||||
|
,
or equivalently, for non-negative integer values of :
\begin{align} \Gamma\left(\tfrac12+n\right)&=
(2n-1)!! | |
2n |
\sqrt{\pi}=
(2n)! | |
4nn! |
\sqrt{\pi}\\ \Gamma\left(\tfrac12-n\right)&=
(-2)n | |
(2n-1)!! |
\sqrt{\pi}=
(-4)nn! | |
(2n)! |
\sqrt{\pi}\end{align}
where denotes the double factorial. In particular,
\Gamma\left(\tfrac12\right) | =\sqrt{\pi} | ≈ 1.7724538509055160273, | ||
\Gamma\left(\tfrac32\right) | =\tfrac12\sqrt{\pi} | ≈ 0.8862269254527580137, | ||
\Gamma\left(\tfrac52\right) | =\tfrac34\sqrt{\pi} | ≈ 1.3293403881791370205, | ||
\Gamma\left(\tfrac72\right) | =\tfrac{15}8\sqrt{\pi} | ≈ 3.3233509704478425512, |
and by means of the reflection formula,
\Gamma\left(-\tfrac12\right) | =-2\sqrt{\pi} | ≈ -3.5449077018110320546, | ||
\Gamma\left(-\tfrac32\right) | =\tfrac43\sqrt{\pi} | ≈ 2.3632718012073547031, | ||
\Gamma\left(-\tfrac52\right) | =-\tfrac8{15}\sqrt{\pi} | ≈ -0.9453087204829418812, |
In analogy with the half-integer formula,
\begin{align} \Gamma\left(n+\tfrac13\right)&=\Gamma\left(\tfrac13\right)
(3n-2)!!! | |
3n |
\\ \Gamma\left(n+\tfrac14\right)&=\Gamma\left(\tfrac14\right)
(4n-3)!!!! | |
4n |
\\ \Gamma\left(n+\tfrac{1}{q}\right)&=\Gamma\left(\tfrac{1}{q}\right)
(qn-(q-1))!(q) | |
qn |
\\ \Gamma\left(n+\tfrac{p}{q}\right)&=\Gamma\left(\tfrac{p}{q}\right)
1 | |
qn |
\prod
n | |
k=1 |
(kq+p-q) \end{align}
where denotes the th multifactorial of . Numerically,
\Gamma\left(\tfrac13\right) ≈ 2.6789385347077476337
\Gamma\left(\tfrac14\right) ≈ 3.6256099082219083119
\Gamma\left(\tfrac15\right) ≈ 4.5908437119988030532
\Gamma\left(\tfrac16\right) ≈ 5.5663160017802352043
\Gamma\left(\tfrac17\right) ≈ 6.5480629402478244377
\Gamma\left(\tfrac18\right) ≈ 7.5339415987976119047
As
n
\Gamma\left(\tfrac1n\right)\simn-\gamma
where
\gamma
\sim
It is unknown whether these constants are transcendental in general, but
\Gamma\left(\tfrac13\right)
\Gamma\left(\tfrac14\right)
| ||||
\pi |
\Gamma\left(\tfrac14\right)
\Gamma\left(\tfrac14\right),\pi
e\pi
It is known that for
n\geq3
\Gamma\left(\tfrac1n\right)
\Gamma\left(\tfrac2n\right)
The number
\Gamma\left(\tfrac14\right)
\varpi
\Gamma\left(\tfrac14\right)=\sqrt{2\varpi\sqrt{2\pi}},
Borwein and Zucker[2] have found that
\Gamma\left(\tfrac{n}{24}\right)
\begin{align} \Gamma\left(\tfrac16\right)&=
| ||||
|
\right)2}{\sqrt[3]{2}}\\ \Gamma\left(\tfrac14\right)&=2\sqrt{K\left(\tfrac12\right)\sqrt{\pi}}\\ \Gamma\left(\tfrac13\right)&=
| ||||||||||
\right)\right)}}{\sqrt[12]{3}} |
\\ \Gamma\left(\tfrac18\right)\Gamma\left(\tfrac38\right)&=8\sqrt[4]{2}\sqrt{\left(\sqrt{2}-1\right)\pi}K\left(3-2\sqrt{2}\right)\\
\Gamma\left(\tfrac18\right) | |
\Gamma\left(\tfrac38\right) |
&=
2\sqrt{\left(1+\sqrt{2 | K\left( | |
\right) |
1 | |
2 |
\right)}}{\sqrt[4]{\pi}} \end{align}
Other formulas include the infinite products
\Gamma\left(\tfrac14\right)=(2
infty | |
\pi) | |
k=1 |
\tanh\left(
\pik | |
2 |
\right)
and
\Gamma\left(\tfrac14\right)=A3
| ||||
e |
\sqrt{\pi}
infty | ||
2 | \left(1- | |
k=1 |
1 | |
2k |
k(-1)k | |
\right) |
where is the Glaisher–Kinkelin constant and is Catalan's constant.
The following two representations for
\Gamma\left(\tfrac34\right)
\sqrt{ | \pi\sqrt{e\pi |
and
\sqrt{ | \pi |
2 |
where and are two of the Jacobi theta functions.
Certain values of the gamma function can also be written in terms of the hypergeometric function. For instance,
\Gamma\left( | 1 |
4 |
\right)4=
32\pi3 | |
\sqrt{33 |
and
\Gamma\left( | 1 |
3 |
\right)6=
12\pi4 | |
\sqrt{10 |
however it is an open question whether this is possible for all rational inputs to the gamma function.[3]
Some product identities include:
2 | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{3}\right)=
2\pi | |
\sqrt3 |
≈ 3.6275987284684357012
3 | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{4}\right)=\sqrt{2\pi3} ≈ 7.8748049728612098721
4 | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{5}\right)=
4\pi2 | |
\sqrt5 |
≈ 17.6552850814935242483
5 | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{6}\right)=4\sqrt{
\pi5 | |
3} |
≈ 40.3993191220037900785
6 | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{7}\right)=
8\pi3 | |
\sqrt7 |
≈ 93.7541682035825037970
7 | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{8}\right)=4\sqrt{\pi7} ≈ 219.8287780169572636207
In general:
n | |
\prod | |
r=1 |
\Gamma\left(\tfrac{r}{n+1}\right)=\sqrt{
(2\pi)n | |
n+1 |
Other rational relations include
\Gamma\left(\tfrac15\right)\Gamma\left(\tfrac{4 | |
15 |
\right)}{\Gamma\left(\tfrac13\right)\Gamma\left(\tfrac{2}{15}\right)}=
\sqrt{2 | +\sqrt{6- | ||
|
6 | |
\sqrt5 |
\Gamma\left(\tfrac{1 | |
20 |
\right)\Gamma\left(\tfrac{9}{20}\right)}{\Gamma\left(\tfrac{3}{20}\right)\Gamma\left(\tfrac{7}{20}\right)}=
\sqrt[4]{5 | |
\left(1+\sqrt{5}\right)}{2} |
| |||||||
|
=
\sqrt{1+\sqrt{5 | |
and many more relations for
\Gamma\left(\tfrac{n}{d}\right)
The gamma function at the imaginary unit gives, :
\Gamma(i)=(-1+i)! ≈ -0.1549-0.4980i.
\Gamma(i)=
G(1+i) | |
G(i) |
=e-log.
Because of the Euler Reflection Formula, and the fact that
\Gamma(\overline{z})=\overline{\Gamma(z)}
| ||||
\left|\Gamma(i\kappa)\right| |
The above integral therefore relates to the phase of
\Gamma(i)
The gamma function with other complex arguments returns
\Gamma(1+i)=i\Gamma(i) ≈ 0.498-0.155i
\Gamma(1-i)=-i\Gamma(-i) ≈ 0.498+0.155i
\Gamma(\tfrac12+\tfrac12i) ≈ 0.8181639995-0.7633138287i
\Gamma(\tfrac12-\tfrac12i) ≈ 0.8181639995+0.7633138287i
\Gamma(5+3i) ≈ 0.0160418827-9.4332932898i
\Gamma(5-3i) ≈ 0.0160418827+9.4332932898i.
The gamma function has a local minimum on the positive real axis
xmin=1.461632144968362341262\ldots
with the value
\Gamma\left(xmin\right)=0.885603194410888\ldots
Integrating the reciprocal gamma function along the positive real axis also gives the Fransén–Robinson constant.
On the negative real axis, the first local maxima and minima (zeros of the digamma function) are: