Particular values of the gamma function explained

The gamma function is an important special function in mathematics. Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general. Other fractional arguments can be approximated through efficient infinite products, infinite series, and recurrence relations.

Integers and half-integers

For positive integer arguments, the gamma function coincides with the factorial. That is,

\Gamma(n)=(n-1)!,

and hence

\begin{align} \Gamma(1)&=1,\\ \Gamma(2)&=1,\\ \Gamma(3)&=2,\\ \Gamma(4)&=6,\\ \Gamma(5)&=24, \end{align}

and so on. For non-positive integers, the gamma function is not defined.

For positive half-integers, the function values are given exactly by

\Gamma\left(\tfrac{n}{2}\right)=\sqrt\pi

(n-2)!!
n-1
2
2

,

or equivalently, for non-negative integer values of :

\begin{align} \Gamma\left(\tfrac12+n\right)&=

(2n-1)!!
2n

\sqrt{\pi}=

(2n)!
4nn!

\sqrt{\pi}\\ \Gamma\left(\tfrac12-n\right)&=

(-2)n
(2n-1)!!

\sqrt{\pi}=

(-4)nn!
(2n)!

\sqrt{\pi}\end{align}

where denotes the double factorial. In particular,

\Gamma\left(\tfrac12\right)

=\sqrt{\pi}

1.7724538509055160273,

\Gamma\left(\tfrac32\right)

=\tfrac12\sqrt{\pi}

0.8862269254527580137,

\Gamma\left(\tfrac52\right)

=\tfrac34\sqrt{\pi}

1.3293403881791370205,

\Gamma\left(\tfrac72\right)

=\tfrac{15}8\sqrt{\pi}

3.3233509704478425512,

and by means of the reflection formula,

\Gamma\left(-\tfrac12\right)

=-2\sqrt{\pi}

-3.5449077018110320546,

\Gamma\left(-\tfrac32\right)

=\tfrac43\sqrt{\pi}

2.3632718012073547031,

\Gamma\left(-\tfrac52\right)

=-\tfrac8{15}\sqrt{\pi}

-0.9453087204829418812,

General rational argument

In analogy with the half-integer formula,

\begin{align} \Gamma\left(n+\tfrac13\right)&=\Gamma\left(\tfrac13\right)

(3n-2)!!!
3n

\\ \Gamma\left(n+\tfrac14\right)&=\Gamma\left(\tfrac14\right)

(4n-3)!!!!
4n

\\ \Gamma\left(n+\tfrac{1}{q}\right)&=\Gamma\left(\tfrac{1}{q}\right)

(qn-(q-1))!(q)
qn

\\ \Gamma\left(n+\tfrac{p}{q}\right)&=\Gamma\left(\tfrac{p}{q}\right)

1
qn

\prod

n
k=1

(kq+p-q) \end{align}

where denotes the th multifactorial of . Numerically,

\Gamma\left(\tfrac13\right)2.6789385347077476337

\Gamma\left(\tfrac14\right)3.6256099082219083119

\Gamma\left(\tfrac15\right)4.5908437119988030532

\Gamma\left(\tfrac16\right)5.5663160017802352043

\Gamma\left(\tfrac17\right)6.5480629402478244377

\Gamma\left(\tfrac18\right)7.5339415987976119047

.

As

n

tends to infinity,

\Gamma\left(\tfrac1n\right)\simn-\gamma

where

\gamma

is the Euler–Mascheroni constant and

\sim

denotes asymptotic equivalence.

It is unknown whether these constants are transcendental in general, but

\Gamma\left(\tfrac13\right)

and

\Gamma\left(\tfrac14\right)

were shown to be transcendental by G. V. Chudnovsky.
-14
\pi

\Gamma\left(\tfrac14\right)

has also long been known to be transcendental, and Yuri Nesterenko proved in 1996 that

\Gamma\left(\tfrac14\right),\pi

and

e\pi

are algebraically independent.

It is known that for

n\geq3

at least one of the two numbers

\Gamma\left(\tfrac1n\right)

and

\Gamma\left(\tfrac2n\right)

is transcendental.[1]

The number

\Gamma\left(\tfrac14\right)

is related to the lemniscate constant

\varpi

by

\Gamma\left(\tfrac14\right)=\sqrt{2\varpi\sqrt{2\pi}},

Borwein and Zucker[2] have found that

\Gamma\left(\tfrac{n}{24}\right)

can be expressed algebraically in terms of,,,, and where is a complete elliptic integral of the first kind. This permits efficiently approximating the gamma function of rational arguments to high precision using quadratically convergent arithmetic–geometric mean iterations. For example:

\begin{align} \Gamma\left(\tfrac16\right)&=

\sqrt{3
\pi
\Gamma\left(1
3

\right)2}{\sqrt[3]{2}}\\ \Gamma\left(\tfrac14\right)&=2\sqrt{K\left(\tfrac12\right)\sqrt{\pi}}\\ \Gamma\left(\tfrac13\right)&=

7/9
2\sqrt[3]{\pi
K\left(1
4
\left(2-\sqrt{3
\right)\right)}}{\sqrt[12]{3}}

\\ \Gamma\left(\tfrac18\right)\Gamma\left(\tfrac38\right)&=8\sqrt[4]{2}\sqrt{\left(\sqrt{2}-1\right)\pi}K\left(3-2\sqrt{2}\right)\\

\Gamma\left(\tfrac18\right)
\Gamma\left(\tfrac38\right)

&=

2\sqrt{\left(1+\sqrt{2K\left(
\right)
1
2

\right)}}{\sqrt[4]{\pi}} \end{align}

Other formulas include the infinite products

\Gamma\left(\tfrac14\right)=(2

infty
\pi)
k=1

\tanh\left(

\pik
2

\right)

and

\Gamma\left(\tfrac14\right)=A3

-G
\pi
e

\sqrt{\pi}

infty
2\left(1-
k=1
1
2k
k(-1)k
\right)

where is the Glaisher–Kinkelin constant and is Catalan's constant.

The following two representations for

\Gamma\left(\tfrac34\right)

were given by I. Mező
\sqrt{\pi\sqrt{e\pi
}}\frac=i\sum_^\infty e^\theta_1\left(\frac(2k-1),e^\right),

and

\sqrt{\pi
2
}\frac=\sum_^\infty\frac,

where and are two of the Jacobi theta functions.

Certain values of the gamma function can also be written in terms of the hypergeometric function. For instance,

\Gamma\left(1
4

\right)4=

32\pi3
\sqrt{33
} _F_\left(\frac,\ \frac,\ \frac;\ 1,\ 1;\ \frac\right)

and

\Gamma\left(1
3

\right)6=

12\pi4
\sqrt{10
} _F_\left(\frac,\ \frac,\ \frac;\ 1,\ 1;\ -\frac\right)

however it is an open question whether this is possible for all rational inputs to the gamma function.[3]

Products

Some product identities include:

2
\prod
r=1

\Gamma\left(\tfrac{r}{3}\right)=

2\pi
\sqrt3

3.6275987284684357012

3
\prod
r=1

\Gamma\left(\tfrac{r}{4}\right)=\sqrt{2\pi3}7.8748049728612098721

4
\prod
r=1

\Gamma\left(\tfrac{r}{5}\right)=

4\pi2
\sqrt5

17.6552850814935242483

5
\prod
r=1

\Gamma\left(\tfrac{r}{6}\right)=4\sqrt{

\pi5
3}

40.3993191220037900785

6
\prod
r=1

\Gamma\left(\tfrac{r}{7}\right)=

8\pi3
\sqrt7

93.7541682035825037970

7
\prod
r=1

\Gamma\left(\tfrac{r}{8}\right)=4\sqrt{\pi7}219.8287780169572636207

In general:

n
\prod
r=1

\Gamma\left(\tfrac{r}{n+1}\right)=\sqrt{

(2\pi)n
n+1
}

Other rational relations include

\Gamma\left(\tfrac15\right)\Gamma\left(\tfrac{4
15

\right)}{\Gamma\left(\tfrac13\right)\Gamma\left(\tfrac{2}{15}\right)}=

\sqrt{2+\sqrt{6-
\sqrt[20]{3}}{\sqrt[6]{5}\sqrt[4]{5-7
\sqrt5
6
\sqrt5
}}}
\Gamma\left(\tfrac{1
20

\right)\Gamma\left(\tfrac{9}{20}\right)}{\Gamma\left(\tfrac{3}{20}\right)\Gamma\left(\tfrac{7}{20}\right)}=

\sqrt[4]{5
\left(1+\sqrt{5}\right)}{2}
\Gamma\left(1\right)2
5
\Gamma\left(1
\right)\Gamma\left(3
10
\right)
10

=

\sqrt{1+\sqrt{5
}}

and many more relations for

\Gamma\left(\tfrac{n}{d}\right)

where the denominator d divides 24 or 60.[4]

Imaginary and complex arguments

The gamma function at the imaginary unit gives, :

\Gamma(i)=(-1+i)!-0.1549-0.4980i.

It may also be given in terms of the Barnes -function:

\Gamma(i)=

G(1+i)
G(i)

=e-log.

Because of the Euler Reflection Formula, and the fact that

\Gamma(\overline{z})=\overline{\Gamma(z)}

, we have an expression for the modulus squared of the gamma function evaluated on the imaginary axis:
2=\pi
\kappa\sinh(\pi\kappa)
\left|\Gamma(i\kappa)\right|

The above integral therefore relates to the phase of

\Gamma(i)

.

The gamma function with other complex arguments returns

\Gamma(1+i)=i\Gamma(i)0.498-0.155i

\Gamma(1-i)=-i\Gamma(-i)0.498+0.155i

\Gamma(\tfrac12+\tfrac12i)0.8181639995-0.7633138287i

\Gamma(\tfrac12-\tfrac12i)0.8181639995+0.7633138287i

\Gamma(5+3i)0.0160418827-9.4332932898i

\Gamma(5-3i)0.0160418827+9.4332932898i.

Other constants

The gamma function has a local minimum on the positive real axis

xmin=1.461632144968362341262\ldots

with the value

\Gamma\left(xmin\right)=0.885603194410888\ldots

.

Integrating the reciprocal gamma function along the positive real axis also gives the Fransén–Robinson constant.

On the negative real axis, the first local maxima and minima (zeros of the digamma function) are:

See also

Further reading

Notes and References

  1. Waldschmidt . Michel . 2006 . Transcendence of periods: the state of the art . Pure and Applied Mathematics Quarterly . 2 . 2 . 435–463.
  2. J. M.. Borwein. I. J.. Zucker. Fast Evaluation of the Gamma Function for Small Rational Fractions Using Complete Elliptic Integrals of the First Kind. IMA Journal of Numerical Analysis. 12. 4. 519 - 526. 1992. 1186733. 10.1093/imanum/12.4.519.
  3. Johansson, F. (2023). Arbitrary-precision computation of the gamma function. Maple Transactions, 3(1).
  4. Vidūnas . Raimundas . math/0403510 . 10.2206/kyushujm.59.267 . 2 . Kyushu Journal of Mathematics . 2188592 . 267–283 . Expressions for values of the gamma function . 59 . 2005.