In applied statistics, a partial regression plot attempts to show the effect of adding another variable to a model that already has one or more independent variables. Partial regression plots are also referred to as added variable plots, adjusted variable plots, and individual coefficient plots.
When performing a linear regression with a single independent variable, a scatter plot of the response variable against the independent variable provides a good indication of the nature of the relationship. If there is more than one independent variable, things become more complicated since independent variables might be (negatively or positively) correlated. Although it can still be useful to generate scatter plots of the response variable against each of the independent variables, this does not take into account the effect of the other independent variables in the model.
Partial regression plots are formed by:
Velleman and Welsch[1] express this mathematically as:
Y\bullet[i] versus Xi\bullet[i]
Y•[i] = residuals from regressing Y (the response variable) against all the independent variables except Xi
Xi•[i] = residuals from regressing Xi against the remaining independent variables.
Velleman and Welsch[1] list the following useful properties for this plot:
\betai
Partial regression plots are related to, but distinct from, partial residual plots. Partial regression plots are most commonly used to identify data points with high leverage and influential data points that might not have high leverage. Partial residual plots are most commonly used to identify the nature of the relationship between Y and Xi (given the effect of the other independent variables in the model). Note that since the simple correlation between the two sets of residuals plotted is equal to the partial correlation between the response variable and Xi, partial regression plots will show the correct strength of the linear relationship between the response variable and Xi. This is not true for partial residual plots. On the other hand, for the partial regression plot, the x-axis is not Xi. This limits its usefulness in determining the need for a transformation (which is the primary purpose of the partial residual plot).