Parseval–Gutzmer formula explained

In mathematics, the Parseval - Gutzmer formula states that, if

f

is an analytic function on a closed disk of radius r with Taylor series

f(z)=

infty
\sum
k=0

akzk,

then for z = re on the boundary of the disk,

2\pi
\int
0

|f(rei\theta)|2d\theta=2\pi

infty
\sum
k=0
2r
|a
k|

2k,

which may also be written as

1
2\pi
2\pi
\int
0

|f(rei\theta)|2d\theta=

infty
\sum
k=0

|akrk|2.

Proof

The Cauchy Integral Formula for coefficients states that for the above conditions:

an=

1
2\pii
\int
\gamma
f(z)
zn+1

dz

where γ is defined to be the circular path around origin of radius r. Also for

x\in\Complex,

we have:

\overline{x}{x}=|x|2.

Applying both of these facts to the problem starting with the second fact:
2\pi
\begin{align} \int
0

\left|f\left(rei\theta\right)\right|2d\theta&=

2\pi
\int
0

f\left(rei\theta\right)\overline{f\left(rei\theta\right)}d\theta\\[6pt] &=

2\pi
\int
0

f\left(rei\theta\right)\left

infty
(\sum
k=0

\overline{ak\left(rei\theta\right)k}\right)d\theta&&UsingTaylorexpansionontheconjugate\\[6pt] &=

2\pi
\int
0

f\left(rei\theta\right)\left

infty
(\sum
k=0

\overline{ak}\left(re-i\theta\right)k\right)d\theta\\[6pt] &=

infty
\sum
k=0
2\pi
\int
0

f\left(rei\theta\right)\overline{ak}\left(re-i\theta\right)kd\theta&&UniformconvergenceofTaylorseries\\[6pt] &=

infty
\sum
k=0

\left(2\pi\overline{ak}r2k\right)\left(

1
2{\pi
2\pi
i}\int
0
f\left(rei\theta\right)
(rei\theta)k+1

{riei\theta

} \right) \mathrm\theta \\& = \sum^\infty_ \left (2\pi \overline r^ \right) a_k && \text \\& = \sum^\infty_
^2 r^
\end

Further Applications

Using this formula, it is possible to show that

infty
\sum
k=0
2r
|a
k|

2k\leqslant

2
M
r

where

Mr=\sup\{|f(z)|:|z|=r\}.

This is done by using the integral

2\pi
\int
0

\left|f\left(rei\theta\right)\right|2d\theta\leqslant2\pi\left|max\theta\left(f\left(rei\theta\right)\right)\right|2=2\pi\left|max|z|=r(f(z))\right|2=2\pi

2
M
r

References

. Complex Analysis. Lars Ahlfors. McGraw - Hill. 1979 . 0-07-085008-9.