In mathematics, the Parseval - Gutzmer formula states that, if
f
f(z)=
infty | |
\sum | |
k=0 |
akzk,
then for z = reiθ on the boundary of the disk,
2\pi | |
\int | |
0 |
|f(rei\theta)|2d\theta=2\pi
infty | |
\sum | |
k=0 |
2r | |
|a | |
k| |
2k,
which may also be written as
1 | |
2\pi |
2\pi | |
\int | |
0 |
|f(rei\theta)|2d\theta=
infty | |
\sum | |
k=0 |
|akrk|2.
The Cauchy Integral Formula for coefficients states that for the above conditions:
an=
1 | |
2\pii |
\int | |
\gamma |
f(z) | |
zn+1 |
dz
where γ is defined to be the circular path around origin of radius r. Also for
x\in\Complex,
\overline{x}{x}=|x|2.
2\pi | |
\begin{align} \int | |
0 |
\left|f\left(rei\theta\right)\right|2d\theta&=
2\pi | |
\int | |
0 |
f\left(rei\theta\right)\overline{f\left(rei\theta\right)}d\theta\\[6pt] &=
2\pi | |
\int | |
0 |
f\left(rei\theta\right)\left
infty | |
(\sum | |
k=0 |
\overline{ak\left(rei\theta\right)k}\right)d\theta&&UsingTaylorexpansionontheconjugate\\[6pt] &=
2\pi | |
\int | |
0 |
f\left(rei\theta\right)\left
infty | |
(\sum | |
k=0 |
\overline{ak}\left(re-i\theta\right)k\right)d\theta\\[6pt] &=
infty | |
\sum | |
k=0 |
2\pi | |
\int | |
0 |
f\left(rei\theta\right)\overline{ak}\left(re-i\theta\right)kd\theta&&UniformconvergenceofTaylorseries\\[6pt] &=
infty | |
\sum | |
k=0 |
\left(2\pi\overline{ak}r2k\right)\left(
1 | |
2{\pi |
2\pi | |
i}\int | |
0 |
f\left(rei\theta\right) | |
(rei\theta)k+1 |
{riei\theta
^2 r^ |
Using this formula, it is possible to show that
infty | |
\sum | |
k=0 |
2r | |
|a | |
k| |
2k\leqslant
2 | |
M | |
r |
where
Mr=\sup\{|f(z)|:|z|=r\}.
This is done by using the integral
2\pi | |
\int | |
0 |
\left|f\left(rei\theta\right)\right|2d\theta\leqslant2\pi\left|max\theta\left(f\left(rei\theta\right)\right)\right|2=2\pi\left|max|z|=r(f(z))\right|2=2\pi
2 | |
M | |
r |
. Complex Analysis. Lars Ahlfors. McGraw - Hill. 1979 . 0-07-085008-9.