An n-parasitic number (in base 10) is a positive natural number which, when multiplied by n, results in movement of the last digit of its decimal representation to its front. Here n is itself a single-digit positive natural number. In other words, the decimal representation undergoes a right circular shift by one place. For example:
4 × 128205 = 512820, so 128205 is 4-parasitic. Most mathematicians do not allow leading zeros to be used, and that is a commonly followed convention.
So even though 4 × 25641 = 102564, the number 25641 is not 4-parasitic.
An n-parasitic number can be derived by starting with a digit k (which should be equal to n or greater) in the rightmost (units) place, and working up one digit at a time.For example, for n = 4 and k = 7
4 × 7 = 28
4 × 87 = 348
4 × 487 = 1948
4 × 9487 = 37948
4 × 79487 = 317948
4 × 179487 = 717948.
So 179487 is a 4-parasitic number with units digit 7. Others are 179487179487, 179487179487179487, etc.
Notice that the repeating decimal
x=0.179487179487179487\ldots=0.\overline{179487}4x=0.\overline{717948}=
7.\overline{179487 | |
4x= | 7+x |
10 |
sox=
7 | |
39 |
.
In general, an n-parasitic number can be found as follows. Pick a one digit integer k such that, and take the period of the repeating decimal k/(10n−1).This will be
k | |
10n-1 |
(10m-1)
For another example, if n = 2, then 10n − 1 = 19 and the repeating decimal for 1/19 is
1 | |
19 |
=0.\overline{052631578947368421}.
So that for 2/19 is double that:
2 | |
19 |
=0.\overline{105263157894736842}.
The length m of this period is 18, the same as the order of 10 modulo 19, so = 105263157894736842.
105263157894736842 × 2 = 210526315789473684, which is the result of moving the last digit of 105263157894736842 to the front.
The step-by-step derivation algorithm depicted above is a great core technique but will not find all n-parasitic numbers. It will get stuck in an infinite loop when the derived number equals the derivation source. An example of this occurs when n = 5 and k = 5. The 42-digit n-parasitic number to be derived is 102040816326530612244897959183673469387755. Check the steps in Table One below. The algorithm begins building from right to left until it reaches step 15—then the infinite loop occurs. Lines 16 and 17 are pictured to show that nothing changes. There is a fix for this problem, and when applied, the algorithm will not only find all n-parasitic numbers in base ten, it will find them in base 8 and base 16 as well. Look at line 15 in Table Two. The fix, when this condition is identified and the n-parasitic number has not been found, is simply to not shift the product from the multiplication, but use it as is, and append n (in this case 5) to the end. After 42 steps, the proper parasitic number will be found.
1. 5 × 5 = 25 − Shift = 55 | |
2. 5 × 55 = 275 − Shift = 755 | |
3. 5 × 755 = 3775 − Shift = 7755 | |
4. 5 × 7755 = 38775 − Shift = 87755 | |
5. 5 × 87755 = 438775 − Shift = 387755 | |
6. 5 × 387755 = 1938775 − Shift = 9387755 | |
7. 5 × 9387755 = 46938775 − Shift = 69387755 | |
8. 5 × 69387755 = 346938775 − Shift = 469387755 | |
9. 5 × 469387755 = 2346938775 − Shift = 3469387755 | |
10. 5 × 3469387755 = 17346938775 − Shift = 73469387755 | |
11. 5 × 73469387755 = 367346938775 − Shift = 673469387755 | |
12. 5 × 673469387755 = 3367346938775 − Shift = 3673469387755 | |
13. 5 × 3673469387755 = 18367346938775 − Shift = 83673469387755 | |
14. 5 × 83673469387755 = 418367346938775 − Shift = 183673469387755 | |
15. 5 × 183673469387755 = 918367346938775 − Shift = 183673469387755 | |
16. 5 × 183673469387755 = 918367346938775 − Shift = 183673469387755 | |
17. 5 × 183673469387755 = 918367346938775 − Shift = 183673469387755 |
1. 5 × 5 = 25 − Shift = 55 | |
2. 5 × 55 = 275 − Shift = 755 | |
3. 5 × 755 = 3775 − Shift = 7755 | |
4. 5 × 7755 = 38775 − Shift = 87755 | |
5. 5 × 87755 = 438775 − Shift = 387755 | |
6. 5 × 387755 = 1938775 − Shift = 9387755 | |
7. 5 × 9387755 = 46938775 − Shift = 69387755 | |
8. 5 × 69387755 = 346938775 − Shift = 469387755 | |
9. 5 × 469387755 = 2346938775 − Shift = 3469387755 | |
10. 5 × 3469387755 = 17346938775 − Shift = 73469387755 | |
11. 5 × 73469387755 = 367346938775 − Shift = 673469387755 | |
12. 5 × 673469387755 = 3367346938775 − Shift = 3673469387755 | |
13. 5 × 3673469387755 = 18367346938775 − Shift = 83673469387755 | |
14. 5 × 83673469387755 = 418367346938775 − Shift = 183673469387755 | |
15. 5 × 183673469387755 = 918367346938775 − Shift = 9183673469387755 | |
16. 5 × 9183673469387755 = 45918367346938775 − Shift = 59183673469387755 | |
17. 5 × 59183673469387755 = 295918367346938775 − Shift = 959183673469387755 |
1. 4 × 4 = 16 − Shift = 64 | |
2. 4 × 64 = 256 − Shift = 564 | |
3. 4 × 564 = 2256 − Shift = 2564 | |
4. 4 × 2564 = 10256 − Shift = 02564 | |
5. 4 × 02564 = 010256 − Shift = 102564 | |
6. 4 × 102564 = 410256 − Shift = 102564 |
The smallest n-parasitic numbers are also known as Dyson numbers, after a puzzle concerning these numbers posed by Freeman Dyson.[1] [2] [3] They are: (leading zeros are not allowed)
n | Smallest n-parasitic number | Digits | Period of | |
---|---|---|---|---|
1 | 1 | 1 | 1/9 | |
2 | 105263157894736842 | 18 | 2/19 | |
3 | 1034482758620689655172413793 | 28 | 3/29 | |
4 | 102564 | 6 | 4/39 | |
5 | 142857 | 6 | 7/49 = 1/7 | |
6 | 1016949152542372881355932203389830508474576271186440677966 | 58 | 6/59 | |
7 | 1014492753623188405797 | 22 | 7/69 | |
8 | 1012658227848 | 13 | 8/79 | |
9 | 10112359550561797752808988764044943820224719 | 44 | 9/89 |
In general, if we relax the rules to allow a leading zero, then there are 9 n-parasitic numbers for each n. Otherwise only if k ≥ n then the numbers do not start with zero and hence fit the actual definition.
Other n-parasitic integers can be built by concatenation. For example, since 179487 is a 4-parasitic number, so are 179487179487, 179487179487179487 etc.
In duodecimal system, the smallest n-parasitic numbers are: (using inverted two and three for ten and eleven, respectively) (leading zeros are not allowed)
n | Smallest n-parasitic number | Digits | Period of | |
---|---|---|---|---|
1 | 1 | 1 | 1/Ɛ | |
2 | 10631694842 | Ɛ | 2/1Ɛ | |
3 | 2497 | 4 | 7/2Ɛ = 1/5 | |
4 | 10309236ᘔ88206164719544 | 1Ɛ | 4/3Ɛ | |
5 | 1025355ᘔ9433073ᘔ458409919Ɛ715 | 25 | 5/4Ɛ | |
6 | 1020408142854ᘔ997732650ᘔ18346916306 | 2Ɛ | 6/5Ɛ | |
7 | 101899Ɛ864406Ɛ33ᘔᘔ15423913745949305255Ɛ17 | 35 | 7/6Ɛ | |
8 | 131ᘔ8ᘔ | 6 | ᘔ/7Ɛ = 2/17 | |
9 | 101419648634459Ɛ9384Ɛ26Ɛ533040547216ᘔ1155Ɛ3Ɛ12978ᘔ399 | 45 | 9/8Ɛ | |
ᘔ (10) | 14Ɛ36429ᘔ7085792 | 14 | 12/9Ɛ = 2/15 | |
Ɛ (11) | 1011235930336ᘔ53909ᘔ873Ɛ325819Ɛ9975055Ɛ54ᘔ3145ᘔ42694157078404491Ɛ | 55 | Ɛ/ᘔƐ |
In strict definition, least number m beginning with 1 such that the quotient m/n is obtained merely by shifting the leftmost digit 1 of m to the right end are
1, 105263157894736842, 1034482758620689655172413793, 102564, 102040816326530612244897959183673469387755, 1016949152542372881355932203389830508474576271186440677966, 1014492753623188405797, 1012658227848, 10112359550561797752808988764044943820224719, 10, 100917431192660550458715596330275229357798165137614678899082568807339449541284403669724770642201834862385321, 100840336134453781512605042016806722689075630252, ...
They are the period of n/(10n − 1), also the period of the decadic integer -n/(10n − 1).
Number of digits of them are
1, 18, 28, 6, 42, 58, 22, 13, 44, 2, 108, 48, 21, 46, 148, 13, 78, 178, 6, 99, 18, 8, 228, 7, 41, 6, 268, 15, 272, 66, 34, 28, 138, 112, 116, 179, 5, 378, 388, 18, 204, 418, 6, 219, 32, 48, 66, 239, 81, 498, ...