In fractal geometry, the parabolic Hausdorff dimension is a restricted version of the genuine Hausdorff dimension. Only parabolic cylinders, i. e. rectangles with a distinct non-linear scaling between time and space are permitted as covering sets. It is usefull to determine the Hausdorff dimension of self-similar stochastic processes, such as the geometric Brownian motion or stable Lévy processes plus Borel measurable drift function
f
We define the
\alpha
\beta
A\subseteq\Rd+1
l{P}\alpha-l{H}\beta(A):=\lim\deltainf\left\{
infty | |
\sum | |
k=1 |
\left|Pk\right|\beta:A\subseteq
infty | |
cup | |
k=1 |
Pk,Pk\inl{P}\alpha,\left|Pk\right|\leq\delta\right\}.
\alpha
\left(Pk\right)k
l{P}\alpha:=\left\{[t,t+c] x
d | |
\prod | |
i=1 |
\left[xi,xi+c1/\alpha\right];t,xi\inR,c\in(0,1]\right\}.
\alpha
A
l{P}\alpha-\dimA:=inf\left\{\beta\geq0:l{P}\alpha-l{H}\beta(A)=0\right\}.
\alpha=1
\dim
Let
\varphi\alpha:=l{P}\alpha-\diml{G}T(f)
BH
1/\alpha=H\in(0,1]
f
\diml{G}T\left(BH+f\right)=\varphi\alpha\wedge
1 | |
\alpha |
⋅ \varphi\alpha+\left(1-
1 | |
\alpha |
\right) ⋅ d
\diml{R}T\left(BH+f\right)=\varphi\alpha\wedged.
\alpha
X
\alpha\in(0,2]
f
\diml{G}T(X+f)= \begin{cases} \varphi1,&\alpha\in(0,1],\\ \varphi\alpha\wedge
1 | |
\alpha |
⋅ \varphi\alpha+\left(1-
1 | |
\alpha |
\right) ⋅ d,&\alpha\in[1,2] \end{cases}
\diml{R}T\left(X+f\right)= \begin{cases} \alpha ⋅ \varphi\alpha\wedged,&\alpha\in(0,1],\\ \varphi\alpha\wedged,&\alpha\in[1,2]. \end{cases}
For
\phi\alpha:=l{P}\alpha-\dimA
\dimA\leq \begin{cases} \phi\alpha\wedge\alpha ⋅ \phi\alpha+1-\alpha,&\alpha\in(0,1],\\ \phi\alpha\wedge
1 | |
\alpha |
⋅ \alpha+\left(1-
1 | |
\alpha |
\right) ⋅ d,&\alpha\in[1,infty) \end{cases}
\dimA\geq \begin{cases} \alpha ⋅ \phi\alpha\vee\phi\alpha+\left(1-
1 | |
\alpha |
\right) ⋅ d,&\alpha\in(0,1],\\ \phi\alpha+1-\alpha,&\alpha\in[1,infty). \end{cases}
BH
1/\alpha=H\in(0,1]
l{P}\alpha-\diml{G}T\left(BH\right)=\alpha ⋅ \dimT
\alpha
X
\alpha\in(0,2]
l{P}\alpha-\diml{G}T\left(X\right)=(\alpha\vee1) ⋅ \dimT
\diml{R}T(X)=\alpha ⋅ \dimT\wedged.
fC
l{P}\alpha-\diml{G}T\left(fC\right)=(\alpha\vee1) ⋅ \dimT.
f\inC\beta(T,Rd)
f
\beta
\varphi\alpha=l{P}\alpha-\diml{G}T(f)
\varphi\alpha\leq \begin{cases} \dimT+\left(
1 | |
\alpha |
-\beta\right) ⋅ d\wedge
\dimT | |
\alpha ⋅ \beta |
\wedged+1,&\alpha\in(0,1],\\ \alpha ⋅ \dimT+(1-\alpha ⋅ \beta) ⋅ d\wedge
\dimT | |
\beta |
\wedged+1,&\alpha\in\left[1,
1 | |
\beta |
\right],\\ \alpha ⋅ \dimT+
1 | |
\beta |
(\dimT-1)+\alpha\wedged+1,&\alpha\in\left[
1 | |
\beta |
,infty)\right] \end{cases}
Finally, for the Brownian motion
B
f\inC\beta\left(T,Rd\right)
\diml{G}T(B+f)\leq \begin{cases} d+
1 | |
2 |
,&\beta\leq
\dimT | |
d |
-
1 | |
2d |
,\\ \dimT+(1-\beta) ⋅ d,&
\dimT | |
d |
-
1 | |
2d |
\leq\beta\leq
\dimT | |
d |
\wedge
1 | ,\\ | |
2 |
\dimT | |
\beta |
,&
\dimT | |
d |
\leq\beta\leq
1 | |
2 |
,\\ 2 ⋅ \dimT\wedge\dimT+
d | |
2 |
,&else \end{cases}
\diml{R}T(B+f)\leq \begin{cases}
\dimT | |
\beta |
,&
\dimT | |
d |
\leq\beta\leq
1 | |
2 |
,\\ 2 ⋅ \dimT\wedged,&
\dimT | |
d |
\leq
1 | |
2 |
\leq\beta,\\ d,&else. \end{cases}