In general relativity and tensor calculus, the Palatini identity is
\deltaR\sigma\nu=\nabla\rho\delta
\rho | |
\Gamma | |
\nu\sigma |
-\nabla\nu\delta
\rho | |
\Gamma | |
\rho\sigma |
,
where
\delta
\rho | |
\Gamma | |
\nu\sigma |
\nabla\rho
l{L}\xiR\sigma\nu
l{L}\xiR\sigma\nu=\nabla\rho(l{L}\xi
\rho | |
\Gamma | |
\nu\sigma |
)-\nabla\nu(l{L}\xi
\rho | |
\Gamma | |
\rho\sigma |
),
where
\xi=\xi\rho\partial\rho
M
λ | |
\Gamma | |
\mu\nu |
\rho} | |
{R | |
\sigma\mu\nu |
=
\rho | |
\partial | |
\nu\sigma |
-
\rho | |
\partial | |
\mu\sigma |
+
\rho | |
\Gamma | |
\muλ |
λ | |
\Gamma | |
\nu\sigma |
-
\rho | |
\Gamma | |
\nuλ |
λ | |
\Gamma | |
\mu\sigma |
Its variation is
\rho} | |
\delta{R | |
\sigma\mu\nu |
= \partial\mu
\rho | |
\delta\Gamma | |
\nu\sigma |
-\partial\nu
\rho | |
\delta\Gamma | |
\mu\sigma |
+
\rho | |
\delta\Gamma | |
\muλ |
λ | |
\Gamma | |
\nu\sigma |
+
\rho | |
\Gamma | |
\muλ |
λ | |
\delta\Gamma | |
\nu\sigma |
-
\rho | |
\delta\Gamma | |
\nuλ |
λ | |
\Gamma | |
\mu\sigma |
-
\rho | |
\Gamma | |
\nuλ |
λ | |
\delta\Gamma | |
\mu\sigma |
While the connection
\rho | |
\Gamma | |
\nu\sigma |
\rho | |
\delta\Gamma | |
\nu\sigma |
\nabla\mu\delta
\rho | |
\Gamma | |
\nu\sigma |
= \partial\mu\delta
\rho | |
\Gamma | |
\nu\sigma |
+
\rho | |
\Gamma | |
\muλ |
\delta
λ | |
\Gamma | |
\nu\sigma |
-
λ | |
\Gamma | |
\mu\nu |
\delta
\rho | |
\Gamma | |
λ\sigma |
-
λ | |
\Gamma | |
\mu\sigma |
\delta
\rho | |
\Gamma | |
\nuλ |
Solving this equation for
\partial\mu\delta
\rho | |
\Gamma | |
\nu\sigma |
\rho} | |
\delta{R | |
\sigma\mu\nu |
\Gamma\delta\Gamma
\rho} | |
\delta{R | |
\sigma\mu\nu |
= \nabla\mu
\rho | |
\delta\Gamma | |
\nu\sigma |
-\nabla\nu
\rho | |
\delta\Gamma | |
\mu\sigma |
Finally, the variation of the Ricci curvature tensor follows by contracting two indices, proving the identity
\deltaR\sigma\nu=\delta
\rho} | |
{R | |
\sigma\rho\nu |
= \nabla\rho\delta
\rho | |
\Gamma | |
\nu\sigma |
-\nabla\nu\delta
\rho | |
\Gamma | |
\rho\sigma |