Palatini identity explained

In general relativity and tensor calculus, the Palatini identity is

\deltaR\sigma\nu=\nabla\rho\delta

\rho
\Gamma
\nu\sigma

-\nabla\nu\delta

\rho
\Gamma
\rho\sigma

,

where

\delta

\rho
\Gamma
\nu\sigma
denotes the variation of Christoffel symbols and

\nabla\rho

indicates covariant differentiation.

l{L}\xiR\sigma\nu

. In fact, one has

l{L}\xiR\sigma\nu=\nabla\rho(l{L}\xi

\rho
\Gamma
\nu\sigma

)-\nabla\nu(l{L}\xi

\rho
\Gamma
\rho\sigma

),

where

\xi=\xi\rho\partial\rho

denotes any vector field on the spacetime manifold

M

.

Proof

λ
\Gamma
\mu\nu
as
\rho}
{R
\sigma\mu\nu

=

\rho
\partial
\nu\sigma

-

\rho
\partial
\mu\sigma

+

\rho
\Gamma
\muλ
λ
\Gamma
\nu\sigma

-

\rho
\Gamma
\nuλ
λ
\Gamma
\mu\sigma
.

Its variation is

\rho}
\delta{R
\sigma\mu\nu

= \partial\mu

\rho
\delta\Gamma
\nu\sigma

-\partial\nu

\rho
\delta\Gamma
\mu\sigma

+

\rho
\delta\Gamma
\muλ
λ
\Gamma
\nu\sigma

+

\rho
\Gamma
\muλ
λ
\delta\Gamma
\nu\sigma

-

\rho
\delta\Gamma
\nuλ
λ
\Gamma
\mu\sigma

-

\rho
\Gamma
\nuλ
λ
\delta\Gamma
\mu\sigma
.

While the connection

\rho
\Gamma
\nu\sigma
is not a tensor, the difference
\rho
\delta\Gamma
\nu\sigma
between two connections is, so we can take its covariant derivative

\nabla\mu\delta

\rho
\Gamma
\nu\sigma

= \partial\mu\delta

\rho
\Gamma
\nu\sigma

+

\rho
\Gamma
\muλ

\delta

λ
\Gamma
\nu\sigma

-

λ
\Gamma
\mu\nu

\delta

\rho
\Gamma
λ\sigma

-

λ
\Gamma
\mu\sigma

\delta

\rho
\Gamma
\nuλ
.

Solving this equation for

\partial\mu\delta

\rho
\Gamma
\nu\sigma
and substituting the result in
\rho}
\delta{R
\sigma\mu\nu
, all the

\Gamma\delta\Gamma

-like terms cancel, leaving only
\rho}
\delta{R
\sigma\mu\nu

= \nabla\mu

\rho
\delta\Gamma
\nu\sigma

-\nabla\nu

\rho
\delta\Gamma
\mu\sigma
.

Finally, the variation of the Ricci curvature tensor follows by contracting two indices, proving the identity

\deltaR\sigma\nu=\delta

\rho}
{R
\sigma\rho\nu

= \nabla\rho\delta

\rho
\Gamma
\nu\sigma

-\nabla\nu\delta

\rho
\Gamma
\rho\sigma
.

See also

References