PCI eXtensions for Instrumentation explained

PCI eXtensions for Instrumentation (PXI) is one of several modular electronic instrumentation platforms in current use. These platforms are used as a basis for building electronic test equipment, automation systems, and modular laboratory instruments.

PXI is based on industry-standard computer buses and permits flexibility in building equipment. Often, modules are fitted with custom software to manage the system.

Overview

PXI is designed for measurement and automation applications that require high-performance and a rugged industrial form-factor.

With PXI, one can select modules from a number of vendors and integrate them into a single PXI system, over 1150 module types available in 2006. A typical 3U PXI module measures approximately (4x6") in size, and a typical 8-slot PXI chassis is 4U high and half rack width, full width chassis contain up to 18 PXI slots.

PXI uses PCI-based technology and an industry standard governed by the PXI Systems Alliance (PXISA) to ensure standards compliance and system interoperability.

There are PXI modules available for almost every conceivable test, measurement, and automation application, from the ubiquitous switching modules and DMMs, to high-performance microwave vector signal generation and analysis.

There are also companies specializing in writing software for PXI modules, as well as companies providing PXI hardware-software integration services.

PXI is based on CompactPCI, and it offers all of the benefits of the PCI architecture including performance, industry adoption, COTS technology. PXI adds a rugged CompactPCI mechanical form-factor, an industry consortium that defines hardware, electrical, software, power and cooling requirements.

Then PXI adds integrated timing and synchronization which is used to route synchronization clocks, and triggers internally. PXI is a future-proof technology, and is designed to be simply and quickly reprogrammed as test, measurement, and automation requirements change.

Most PXI instrument modules are register-based products, that use software drivers hosted on a PC to configure them as useful instruments, taking advantage of the increasing power of PCs to improve hardware access and simplify embedded software in the modules. The open architecture allows hardware to be reconfigured to provide new facilities and features that are difficult to emulate in comparable bench instruments.

PXI system data bandwidth performance easily exceeds the performance of the older VXI test standard. There is debate within the technical community as to whether newer standards such as LXI will surpass PXI in both performance and overall cost of ownership.

PXI modules providing the instrument functions are plugged into a PXI chassis which may include its own controller running an industry standard operating system such as Windows 7, Windows XP, Windows 2000, or Linux,[1] or a PCI-to-PXI bridge that provides a high-speed link to a desktop PC controller. Likewise, multiple PXI racks can be linked together with PCI bridge cards, to build very large systems such as multiple source microwave signal generator test stands for complex ATE applications.

CompactPCI and PXI products are interchangeable, i.e. they can be used in either CompactPCI or PXI chassis, but installation in the alternative chassis type may eliminate certain clocking and triggering features. So, for example, you could mount a CompactPCI Network interface controller in a PXI rack to provide additional network interface functions to a test stand. Conversely, a PXI module installed in a CompactPCI chassis would not utilize the additional clocking and triggering features of the PXI module.

PXI Systems Alliance

PCI eXtensions for Instrumentation (PXI) is a modular instrumentation platform originally introduced in 1997 by National Instruments. PXI is promoted by the 69-member PXI Systems Alliance (PXISA), whose sponsor members are (in alphabetical order) ADLINK, Cobham Wireless, Keysight Technologies, Marvin Test Solutions, National Instruments, Pickering Interfaces and Teradyne.[2]

Executive Members of the alliance include Alfamation, Beijing Pansino Solutions Technology Co., CHROMA ATE Inc., GOEPEL electronic, MAC Panel, and Virginia Panel Corp. Another 56 associate member organizations that do not have voting rights are supporting PXI and use the PXI logo on their products and marketing material.[2]

PXI providers in 2006

National Instruments and Agilent Technologies (now Keysight Technologies) entered the PXI test market in 2006.

Derived standards

External links

Notes and References

  1. Web site: PXI Systems Alliance. March 20, 2020. PXI-2 Software Specification Rev. 2.6. January 23, 2023. PXI Systems Alliance Specifications. PXI Systems Alliance.
  2. Web site: Membership Roster. PXI Systems Alliance. 21 April 2015.
  3. https://archive.today/20130121212343/http://www.eetasia.com/ART_8800442298_480300_1cabadc4200611.HTM http://www.eetasia.com
  4. http://www.frost.com/prod/servlet/market-insight-top.pag?docid=88875505 http://www.frost.com
  5. T.. Fountain. A.. McCarthy. F.. Peng. PCI Express: an Overview of PCI Express, Cabled PCI Express and PXI Express. 10th ICALEPCS Int. Conf. on Accelerator & Large Expt. Physics Control Systems. 2005.
  6. PXI Systems Alliance. PXI Express Hardware Specification. Standard. PXI-5. 2005.
  7. Web site: Supercharging Test and Measurement Systems with Intel Xeon CPU and PCI Express Gen 3 Technology - National Instruments. www.ni.com. 2016-05-17.
  8. Web site: PC Control of PXI. National Instruments. 18 June 2014.
  9. Web site: Introduction to PXImc - Technology for High Performance Test, Measurement & Control Applications - National Instruments. www.ni.com. 2016-05-17.
  10. News: Rowe. Martin. PXI expands to multiple processors. Test & Measurement World. 1 December 2009. https://web.archive.org/web/20120222052445/http://www.tmworld.com/article/440758-PXI_expands_to_multiple_processors.php. 22 February 2012. dead.