Pöschl–Teller potential explained

In mathematical physics, a Pöschl - Teller potential, named after the physicists Herta Pöschl[1] (credited as G. Pöschl) and Edward Teller, is a special class of potentials for which the one-dimensional Schrödinger equation can be solved in terms of special functions.

Definition

In its symmetric form is explicitly given by[2]

V(x)=-

λ(λ+1)
2

sech2(x)

and the solutions of the time-independent Schrödinger equation
-1
2

\psi''(x)+V(x)\psi(x)=E\psi(x)

with this potential can be found by virtue of the substitution

u=tanh(x)

, which yields
2)\psi'(u)\right]'(λ+1)\psi(u)+2E
1-u2
\left[(1-u

\psi(u)=0

.Thus the solutions

\psi(u)

are just the Legendre functions
\mu(\tanh(x))
P
λ
with
E=-\mu2
2
, and

λ=1,2,3 …

,

\mu=1,2,,λ-1,λ

. Moreover, eigenvalues and scattering data can be explicitly computed.[3] In the special case of integer

λ

, the potential is reflectionless and such potentials also arise as the N-soliton solutions of the Korteweg–De Vries equation.[4]

The more general form of the potential is given by

V(x)=-

λ(λ+1)
2

sech2(x)-

\nu(\nu+1)
2

csch2(x).

Rosen–Morse potential

A related potential is given by introducing an additional term:[5]

V(x)=-

λ(λ+1)
2

sech2(x)-g\tanhx.

See also

External links

Notes and References

  1. Web site: "Edward Teller Biographical Memoir." by Stephen B. Libby and Andrew M. Sessler, 2009 (published in Edward Teller Centennial Symposium: modern physics and the scientific legacy of Edward Teller, World Scientific, 2010. . 2011-11-29 . https://web.archive.org/web/20170118171614/https://e-reports-ext.llnl.gov/pdf/376159.pdf . 2017-01-18 . dead .
  2. Pöschl . G. . Teller . E. . 10.1007/BF01331132 . Bemerkungen zur Quantenmechanik des anharmonischen Oszillators . Zeitschrift für Physik . 83 . 3–4 . 143–151 . 1933 . 1933ZPhy...83..143P . 124830271 .
  3. [Siegfried Flügge]
  4. Lekner . John . 10.1119/1.2787015 . Reflectionless eigenstates of the sech2 potential . American Journal of Physics . 875 . 12 . 1151–1157 . 2007. 2007AmJPh..75.1151L .
  5. Barut. A. O.. Inomata. A.. Wilson. R.. 1987. Algebraic treatment of second Poschl-Teller, Morse-Rosen and Eckart equations. Journal of Physics A: Mathematical and General. en. 20. 13. 4083. 10.1088/0305-4470/20/13/017. 0305-4470. 1987JPhA...20.4083B.