Oxynitride Explained

The oxynitrides are a group of inorganic compounds containing oxygen and nitrogen not bound to each other, instead combined with other non-metallic or metallic elements. Some of these are oxosalts with oxygen replaced by nitrogen. Some of these compounds do not have a fixed oxygen to nitrogen ratio, but instead form ceramics with a range of compositions. They are in the class of mixed anion compounds.

Many can be formed by heating an oxide or carbonate with ammonia. The hydrogen can assist by reducing some of the oxygen. With higher temperatures and pressures nitrogen can be heated with a mixed oxide to yield a product. Other nitrogen rich compounds that can be heated with oxygen containing material are urea and melamine. For example urea heated with ammonium dihydrogen phosphate yields a phosphorus oxynitride.

There may not be a definite ratio of nitrogen to oxygen, and also nitrogen and oxygen may be disordered, swapping places at random.

Compared to oxides, the oxynitrides have a smaller band gap.[1]

List

nameother nameformulapropertiesreference
aluminium oxynitrideALONtransparent, tough
Lithium silicon oxynitrideLiSiONPca21 Wurtzite structure a=5.1986 b=6.3893 c=4.7398
SiAlONSiAlNO (Li,Mg,Y,Le,Ce,Eu)
Silicon oxynitride
sodium silicon oxynitrideNaSiONwhite Wurtzite structure
SinoiteSi2N2Omineral
Li14Cr2N8OP a=5.799 c=8.263
NaGeONwhite Wurtzite structure
potassium germanium oxynitrideKGeONyellow Wurtzite structure a=5.7376 b=8.0535 c=5.2173
(Si,Ge)2N2O[2]
CaTaO2Nperovskite[3]
SrTaO2Nperovskite
BaTaO2Nperovskite
CaNbO2Nperovskite
SrNbO2Nperovskite
Sr2NbO3N
strontium gallium oxynitrideSr4GaN3Ored Pbca a = 7.4002 b = 24.3378 c = 7.4038Å, Z = 8[4]
Sr3Nb2O5N2
In32ON17F43Ia a=10.536 fluorite structure
BaNbO2Nperovskite
LaTaON2
LnTiO2N
LnTaO2N
EuTaO2N
EuNbO2N
LnNbO2N
LnVO2N
CaTiO2N
CaZrO2N
LaZrO2N
EuWON2
Ln2AlO3N
PONPNOα-quartz, β-cristobalite, or moganite structure
Titanium nickel oxynitrideNiTiNO
Chromium oxynitrideCr(N,O)
galloaluminophosphate oxynitrideAlGaPON[5]
zinc oxynitrideZnON
Titanium oxynitrideTiOxNy[6]
K2Ca2Ta3O9N·2H2Operovskite
K2LaTa2O6N·1.6H2O

Notes and References

  1. Tang. Ya. Kato. Kosaku. Oshima. Takayoshi. Mogi. Hiroto. Miyoshi. Akinobu. Fujii. Kotaro. Yanagisawa. Kei-ichi. Kimoto. Koji. Yamakata. Akira. Yashima. Masatomo. Maeda. Kazuhiko. 2020-07-19. Synthesis of Three-Layer Perovskite Oxynitride K 2 Ca 2 Ta 3 O 9 N·2H 2 O and Photocatalytic Activity for H 2 Evolution under Visible Light. Inorganic Chemistry. 59. 15. en. 11122–11128. 10.1021/acs.inorgchem.0c01607. 32683860. 220653385. 0020-1669.
  2. Kang. Lei. He. Gang. Zhang. Xinyuan. Li. Jiangtao. Lin. Zheshuai. Huang. Bing. 2021-05-17. Alloy Engineering of a Polar (Si,Ge) 2 N 2 O System for Controllable Second Harmonic Performance. Inorganic Chemistry. en. 60. 10. 7381–7388. 10.1021/acs.inorgchem.1c00590. 33905663. 0020-1669. 2009.06932. 231925656.
  3. Fuertes . Amparo . Chemistry and applications of oxynitride perovskites . Journal of Materials Chemistry . 2012 . 22 . 8 . 3293 . 10.1039/C2JM13182J.
  4. Mallinson. Phillip M.. Gál. Zoltán A.. Clarke. Simon J.. January 2006. Two New Structurally Related Strontium Gallium Nitrides: Sr 4 GaN 3 O and Sr 4 GaN 3 (CN 2). Inorganic Chemistry. en. 45. 1. 419–423. 10.1021/ic051542q. 16390084. 0020-1669.
  5. Lee. Eunha. Kim. Taeho. Benayad. Anass. Hur. Jihyun. Park. Gyeong-Su. Jeon. Sanghun. 5 April 2016. High mobility and high stability glassy metal-oxynitride materials and devices. Scientific Reports. en. 6. 1. 23940. 10.1038/srep23940. 27044371. 4820723. 2016NatSR...623940L. 2045-2322. free.
  6. Braic. Laurentiu. Vasilantonakis. Nikolaos. Mihai. Andrei. Villar Garcia. Ignacio Jose. Fearn. Sarah. Zou. Bin. Alford. Neil McN.. Doiron. Brock. Oulton. Rupert F.. Maier. Stefan A.. Zayats. Anatoly V.. 24 August 2017. Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications. ACS Applied Materials & Interfaces. 9. 35. 29857–29862. 10.1021/acsami.7b07660. Petrov. Peter K.. 28820932. 10044/1/52727. 206458627. free.