Otoferlin Explained
Otoferlin is a protein that in humans is encoded by the OTOF gene.[1] [2] [3] It is involved in vesicle membrane fusion, and mutations in the OTOF gene are associated with a genetic form of deafness.
Function
There are two forms of otoferlin protein. The short form of the protein has three C2 domains and a single carboxy-terminal transmembrane domain found also in the C. elegans spermatogenesis factor FER-1 and human dysferlin. The long form has six C2 domains.
Dysferlin and myoferlin are proteins found in humans that are homologous to otoferlin. Both dysferlin and myoferlin have seven C2 domains. A C2 domain is a protein structural domain involved in targeting proteins to cell membranes.
C2A in otoferlin's longer form, with six C2 domains, is structurally similar to dysferlin C2A. However, loop 1 in the calcium (Ca2+) binding site of otoferlin C2A is significantly shorter than the homologous loop in dysferlin and myoferlin C2A domains. Therefore, it is unable to bind to calcium. Otoferlin C2A is also unable to bind to phospholipids and hence it is structurally and functionally distinct from other C2 domains.[4] Nonetheless, the homology suggests that this protein may be involved in vesicle membrane fusion.
Similar to dysferlin and myoferlin, otoferlin has a FerA domain and its FerA domain has been shown to interact with zwitterionic lipids in a calcium-dependent manner and with negatively charged lipids in a calcium-independent manner.[5] The estimated charge of the FerA domain among ferlin proteins varies significantly. At pH 7, the estimated charge of dysferlin is -8.4 while otoferlin FerA is +8.5. Several transcript variants encoding multiple isoforms have been found for this gene.
Role in deafness
Mutations in the gene encoding otoferlin are a cause of a neurosensory nonsyndromic recessive deafness, DFNB9. The diagnosis is identified by molecular genetic testing.
In October 2023 two small clinical trials for a gene therapy restoring the defective Otoferlin via an adeno-associated virus (AAVs) have been announced. The two experimental gene therapies are AAVAnc80-hOTOF and DB-OTO.[6] [7] A successful application of the therapy in Britain was announced in May 2024.[8] [9]
External links
Further reading
- Fukushima K, Ramesh A, Srisailapathy CR, Ni L, Wayne S, O'Neill ME, Van Camp G, Coucke P, Jain P, Wilcox ER, Smith SD, Kenyon JB, Zbar RI, Smith RJ . An autosomal recessive nonsyndromic form of sensorineural hearing loss maps to 3p-DFNB6 . Genome Research . 5 . 3 . 305–8 . October 1995 . 8593615 . 10.1101/gr.5.3.305 . free .
- Yasunaga S, Petit C . Physical map of the region surrounding the OTOFERLIN locus on chromosome 2p22-p23 . Genomics . 66 . 1 . 110–2 . May 2000 . 10843812 . 10.1006/geno.2000.6185 .
- Adato A, Raskin L, Petit C, Bonne-Tamir B . Deafness heterogeneity in a Druze isolate from the Middle East: novel OTOF and PDS mutations, low prevalence of GJB2 35delG mutation and indication for a new DFNB locus . European Journal of Human Genetics . 8 . 6 . 437–42 . June 2000 . 10878664 . 10.1038/sj.ejhg.5200489 . free .
- Yasunaga S, Grati M, Chardenoux S, Smith TN, Friedman TB, Lalwani AK, Wilcox ER, Petit C . OTOF encodes multiple long and short isoforms: genetic evidence that the long ones underlie recessive deafness DFNB9 . American Journal of Human Genetics . 67 . 3 . 591–600 . September 2000 . 10903124 . 1287519 . 10.1086/303049 .
- Migliosi V, Modamio-Høybjør S, Moreno-Pelayo MA, Rodríguez-Ballesteros M, Villamar M, Tellería D, Menéndez I, Moreno F, Del Castillo I . Q829X, a novel mutation in the gene encoding otoferlin (OTOF), is frequently found in Spanish patients with prelingual non-syndromic hearing loss . Journal of Medical Genetics . 39 . 7 . 502–6 . July 2002 . 12114484 . 1735186 . 10.1136/jmg.39.7.502 .
- Mirghomizadeh F, Pfister M, Apaydin F, Petit C, Kupka S, Pusch CM, Zenner HP, Blin N . Substitutions in the conserved C2C domain of otoferlin cause DFNB9, a form of nonsyndromic autosomal recessive deafness . Neurobiology of Disease . 10 . 2 . 157–64 . July 2002 . 12127154 . 10.1006/nbdi.2002.0488 . 37646982 .
- Mirghomizadeh F, Pfister M, Blin N, Pusch CM . Uncommon cytidine-homopolymer dimorphism in 5'-UTR of the human otoferlin gene . International Journal of Molecular Medicine . 11 . 1 . 63–4 . January 2003 . 12469219 . 10.3892/ijmm.11.1.63 .
- Varga R, Kelley PM, Keats BJ, Starr A, Leal SM, Cohn E, Kimberling WJ . Non-syndromic recessive auditory neuropathy is the result of mutations in the otoferlin (OTOF) gene . Journal of Medical Genetics . 40 . 1 . 45–50 . January 2003 . 12525542 . 1735255 . 10.1136/jmg.40.1.45 .
- Piechotta K, Garbarini N, England R, Delpire E . Characterization of the interaction of the stress kinase SPAK with the Na+-K+-2Cl- cotransporter in the nervous system: evidence for a scaffolding role of the kinase . The Journal of Biological Chemistry . 278 . 52 . 52848–56 . December 2003 . 14563843 . 10.1074/jbc.M309436200 . free .
- Varga R, Avenarius MR, Kelley PM, Keats BJ, Berlin CI, Hood LJ, Morlet TG, Brashears SM, Starr A, Cohn ES, Smith RJ, Kimberling WJ . OTOF mutations revealed by genetic analysis of hearing loss families including a potential temperature sensitive auditory neuropathy allele . Journal of Medical Genetics . 43 . 7 . 576–81 . July 2006 . 16371502 . 2593030 . 10.1136/jmg.2005.038612 .
- Roux I, Safieddine S, Nouvian R, Grati M, Simmler MC, Bahloul A, Perfettini I, Le Gall M, Rostaing P, Hamard G, Triller A, Avan P, Moser T, Petit C . Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse . Cell . 127 . 2 . 277–89 . October 2006 . 17055430 . 10.1016/j.cell.2006.08.040 . 15233556 . free .
Notes and References
- Yasunaga S, Grati M, Cohen-Salmon M, El-Amraoui A, Mustapha M, Salem N, El-Zir E, Loiselet J, Petit C . A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness . Nature Genetics . 21 . 4 . 363–9 . April 1999 . 10192385 . 10.1038/7693 . 19269361 .
- Rodríguez-Ballesteros M, Reynoso R, Olarte M, Villamar M, Morera C, Santarelli R, Arslan E, Medá C, Curet C, Völter C, Sainz-Quevedo M, Castorina P, Ambrosetti U, Berrettini S, Frei K, Tedín S, Smith J, Cruz Tapia M, Cavallé L, Gelvez N, Primignani P, Gómez-Rosas E, Martín M, Moreno-Pelayo MA, Tamayo M, Moreno-Barral J, Moreno F, del Castillo I . A multicenter study on the prevalence and spectrum of mutations in the otoferlin gene (OTOF) in subjects with nonsyndromic hearing impairment and auditory neuropathy . Human Mutation . 29 . 6 . 823–31 . June 2008 . 18381613 . 10.1002/humu.20708 . 19170712 . free .
- Web site: Entrez Gene: OTOF otoferlin.
- Helfmann S, Neumann P, Tittmann K, Moser T, Ficner R, Reisinger E . The crystal structure of the C₂A domain of otoferlin reveals an unconventional top loop region . Journal of Molecular Biology . 406 . 3 . 479–90 . February 2011 . 21216247 . 10.1016/j.jmb.2010.12.031 .
- Harsini FM, Chebrolu S, Fuson KL, White MA, Rice AM, Sutton RB . FerA is a Membrane-Associating Four-Helix Bundle Domain in the Ferlin Family of Membrane-Fusion Proteins . Scientific Reports . 8 . 1 . 10949 . July 2018 . 30026467 . 10.1038/s41598-018-29184-1 . 6053371 . 2018NatSR...810949H .
- Web site: Some deaf children in China can hear after gene therapy treatment . 2023-11-09 . MIT Technology Review . en.
- News: 26 October 2023 . REGENERON SHARES PRELIMINARY RESULTS SHOWING GENE THERAPY IMPROVES AUDITORY RESPONSES IN CHILD WITH PROFOUND GENETIC HEARING LOSS . .
- Web site: Pioneering gene therapy restores UK girl's hearing . 2024-05-09. BBC News . en.
- Web site: UK toddler has hearing restored in world-first gene therapy trial . 2024-05-09. the Guardian . en.