Osmotic coefficient explained

An osmotic coefficient

\phi

is a quantity which characterises the deviation of a solvent from ideal behaviour, referenced to Raoult's law. It can be also applied to solutes. Its definition depends on the ways of expressing chemical composition of mixtures.

The osmotic coefficient based on molality m is defined by:\phi = \frac

and on a mole fraction basis by:

\phi = -\frac

where

*
\mu
A
is the chemical potential of the pure solvent and

\muA

is the chemical potential of the solvent in a solution, MA is its molar mass, xA its mole fraction, R the gas constant and T the temperature in Kelvin. The latter osmoticcoefficient is sometimes called the rational osmotic coefficient. The values for the two definitions are different, but since

\ln x_A = - \ln \left(1 + M_A \sum_i m_i \right) \approx - M_A \sum_i m_i,

the two definitions are similar, and in fact both approach 1 as the concentration goes to zero.

Applications

For liquid solutions, the osmotic coefficient is often used to calculate the salt activity coefficient from the solvent activity, or vice versa. For example, freezing point depression measurements, or measurements of deviations from ideality for other colligative properties, allows calculation of the salt activity coefficient through the osmotic coefficient.

Relation to other quantities

In a single solute solution, the (molality based) osmotic coefficient and the solute activity coefficient

\gamma

are related to the excess Gibbs free energy

GE

by the relations:

RTm(1-\phi)=GE-m

dGE
dm

RTln\gamma=

dGE
dm

and there is thus a differential relationship between them (temperature and pressure held constant):

d((\phi-1)m)=md(ln\gamma)

Liquid electrolyte solutions

For a single salt solute with molal activity (

\gamma\pmm

), the osmotic coefficient can be written as
\phi=-ln(aA)
\numMA
where

\nu

is the stochiometric number of salt and

aA

the activity of the solvent.

\phi

can be calculated from the salt activity coefficient via:[1]

\phi=1+

1
m
m
\int
0

md\left(ln(\gamma\pm)\right)

Moreover, the activity coefficient of the salt

\gamma\pm

can be calculated from:[2]

ln(\gamma\pm)=

m
\phi-1+\int
0
\phi-1
m

dm

According to Debye–Hückel theory, which is accurate only at low concentrations, (\phi - 1) \sum_i m_i is asymptotic to -\frac 2 3 A I^, where I is ionic strength and A is the Debye–Hückel constant (equal to about 1.17 for water at 25 °C).

This means that, at least at low concentrations, the vapor pressure of the solvent will be greater than that predicted by Raoult's law. For instance, for solutions of magnesium chloride, the vapor pressure is slightly greater than that predicted by Raoult's law up to a concentration of 0.7 mol/kg, after which the vapor pressure is lower than Raoult's law predicts. For aqueous solutions, the osmotic coefficients can be calculated theoretically by Pitzer equations[3] or TCPC model.[4] [5] [6] [7]

See also

Notes and References

  1. Book: Pitzer, Kenneth S. . Activity Coefficients in Electrolyte Solutions . CRC Press . 2018.
  2. Book: Pitzer, Kenneth. Activity Coefficients in Electrolyte Solutions. CRC Press. 1991. 978-1-315-89037-1. 13.
  3. I. Grenthe and H. Wanner, Guidelines for the extrapolation to zero ionic strength, http://www.nea.fr/html/dbtdb/guidelines/tdb2.pdf
  4. Ge. Xinlei. Wang. Xidong. Zhang. Mei. Seetharaman. Seshadri. Correlation and Prediction of Activity and Osmotic Coefficients of Aqueous Electrolytes at 298.15 K by the Modified TCPC Model. Journal of Chemical & Engineering Data. 52. 2. 2007. 538–547. 0021-9568. 10.1021/je060451k.
  5. Ge. Xinlei. Zhang. Mei. Guo. Min. Wang. Xidong. Correlation and Prediction of Thermodynamic Properties of Nonaqueous Electrolytes by the Modified TCPC Model. Journal of Chemical & Engineering Data. 53. 1. 2008. 149–159. 0021-9568. 10.1021/je700446q.
  6. Ge. Xinlei. Zhang. Mei. Guo. Min. Wang. Xidong. Correlation and Prediction of Thermodynamic Properties of Some Complex Aqueous Electrolytes by the Modified Three-Characteristic-Parameter Correlation Model. Journal of Chemical & Engineering Data. 53. 4. 2008. 950–958. 0021-9568. 10.1021/je7006499.
  7. Ge. Xinlei. Wang. Xidong. A Simple Two-Parameter Correlation Model for Aqueous Electrolyte Solutions across a Wide Range of Temperatures†. Journal of Chemical & Engineering Data. 54. 2. 2009. 179–186. 0021-9568. 10.1021/je800483q.