Orthotransversal Explained

In Euclidean geometry, the orthotransversal of a point is the line defined as follows.[1] [2]

For a triangle and a point, three orthotraces, intersections of lines and perpendiculars of through respectively are collinear. The line which includes these three points is called the orthotransversal of .

Existence of it can proved by various methods such as a pole and polar, the dual of, and the Newton line theorem.[3] [4]

The tripole of the orthotransversal is called the orthocorrespondent of,[5] [6] And the transformation →, the orthocorrespondent of is called the orthocorrespondence.[7]

Example

Properties

p(-pSA+qSB+rS

2qr:q(pS
A-qS

B+rS

2rp:r(pS
A+qS

B-rS

2pq,
C)+c

where are Conway notation.

Orthopivotal cubic

The Locus of points that, and are collinear is a cubic curve. This is called the orthopivotal cubic of, .[15] Every orthopivotal cubic passes through two Fermat points.

Example

See also

References

External links

Notes and References

  1. Gibert . Bernard . 2003 . Orthocorrespondence and Orthopivotal Cubics . . 3.
  2. Web site: Eliud Lozada . César . Extended glossary . faculty.evansville.edu.
  3. Web site: Cohl . Telv . Extension of orthotransversal . AoPS.
  4. Web site: Existence of Orthotransversal . AoPS.
  5. Bernard . Gibert . 2003 . Antiorthocorrespondents of Circumconics . Forum Geometricorum . 3.
  6. Gibert . Bernard . van Lamoen . Floor . 2003 . The Parasix Configuration and Orthocorrespondence . Forum Geometricorum . 3 . 173.
  7. Evers . Manfred . 2012 . Generalizing Orthocorrespondence . Forum Geometricorum . 12.
  8. Web site: Li4 . S⊗ . 和輝 . 幾何引理維基 . zh.
  9. Web site: dagezjm . Pedal triangle . AoPS.
  10. [MathWorld|Mathworld]
  11. Web site: Li4 . 圓錐曲線 . zh.
  12. Web site: Li4 . S . 張志煥截線 . zh.
  13. Web site: S . 正交截線 . zh.
  14. Web site: QA-Tf14: QA-Orthotransversal Point . 2024-11-02 . ENCYCLOPEDIA OF QUADRI-FIGURES (EQF).
  15. Web site: Orthopivotal Cubics . Catalogue of Triangle Cubics.
  16. Web site: Gibert . Bernard . Neuberg Cubics .
  17. Web site: K053 . Cubic in Triangle Plane.