Orthotransversal Explained
In Euclidean geometry, the orthotransversal of a point is the line defined as follows.[1] [2]
For a triangle and a point, three orthotraces, intersections of lines and perpendiculars of through respectively are collinear. The line which includes these three points is called the orthotransversal of .
Existence of it can proved by various methods such as a pole and polar, the dual of, and the Newton line theorem.[3] [4]
The tripole of the orthotransversal is called the orthocorrespondent of,[5] [6] And the transformation →, the orthocorrespondent of is called the orthocorrespondence.[7]
Example
- The orthotransversal of the Feuerbach point is the OI line.[8]
- The orthotransversal of the Jerabek center is the Euler line.
- Orthocorrespondents of Fermat points are themselves.[9]
- The orthocorrespondent of the Kiepert center X(115) is the focus of the Kiepert parabola X(110).
Properties
where are Conway notation.
Orthopivotal cubic
The Locus of points that, and are collinear is a cubic curve. This is called the orthopivotal cubic of, .[15] Every orthopivotal cubic passes through two Fermat points.
Example
See also
References
- Cosmin Pohoata, Vladimir Zajic (2008). "Generalization of the Apollonius Circles". .
- Manfred Evers (2019), "On The Geometry of a Triangle in the Elliptic and in the Extended Hyperbolic Plane".
External links
- Web site: Li4 . 平面幾何 . zh.
Notes and References
- Gibert . Bernard . 2003 . Orthocorrespondence and Orthopivotal Cubics . . 3.
- Web site: Eliud Lozada . César . Extended glossary . faculty.evansville.edu.
- Web site: Cohl . Telv . Extension of orthotransversal . AoPS.
- Web site: Existence of Orthotransversal . AoPS.
- Bernard . Gibert . 2003 . Antiorthocorrespondents of Circumconics . Forum Geometricorum . 3.
- Gibert . Bernard . van Lamoen . Floor . 2003 . The Parasix Configuration and Orthocorrespondence . Forum Geometricorum . 3 . 173.
- Evers . Manfred . 2012 . Generalizing Orthocorrespondence . Forum Geometricorum . 12.
- Web site: Li4 . S⊗ . 和輝 . 幾何引理維基 . zh.
- Web site: dagezjm . Pedal triangle . AoPS.
- [MathWorld|Mathworld]
- Web site: Li4 . 圓錐曲線 . zh.
- Web site: Li4 . S . 張志煥截線 . zh.
- Web site: S . 正交截線 . zh.
- Web site: QA-Tf14: QA-Orthotransversal Point . 2024-11-02 . ENCYCLOPEDIA OF QUADRI-FIGURES (EQF).
- Web site: Orthopivotal Cubics . Catalogue of Triangle Cubics.
- Web site: Gibert . Bernard . Neuberg Cubics .
- Web site: K053 . Cubic in Triangle Plane.