In mathematics, specifically in order theory and functional analysis, a sequence of positive elements
\left(xi\right)
infty | |
i=1 |
X
xi\geq0
i
\supn
n | |
\sum | |
i=1 |
xi
X
1\leqp\leqinfty
\left(xi\right)
infty | |
i=1 |
X
\ellp
z\inX
\left(ci\right)
infty | |
i=1 |
\ellp
0\leqxi\leqciz
i
The notion of order summable sequences is related to the completeness of the order topology.