Opisthokont Explained

The opisthokonts are a broad group of eukaryotes, including both the animal and fungus kingdoms.[1] The opisthokonts, previously called the "Fungi/Metazoa group",[2] are generally recognized as a clade. Opisthokonts together with Apusomonadida and Breviata comprise the larger clade Obazoa.[3] [4] [5] [6] [7]

Flagella and other characteristics

A common characteristic of opisthokonts is that flagellate cells, such as the sperm of most animals and the spores of the chytrid fungi, propel themselves with a single posterior flagellum. It is this feature that gives the group its name. In contrast, flagellate cells in other eukaryote groups propel themselves with one or more anterior flagella. Flagellate cells however have been secondarily lost in some opisthokont groups, including most of the fungi.[3]

Opisthokont characteristics include synthesis of extracellular chitin in exoskeleton, cyst/spore wall, or cell wall of filamentous growth and hyphae; the extracellular digestion of substrates with osmotrophic absorption of nutrients; and other cell biosynthetic and metabolic pathways. Genera at the base of each clade are amoeboid and phagotrophic.[8]

History

The close relationship between animals and fungi was suggested by Thomas Cavalier-Smith in 1987,[9] who used the informal name opisthokonta (the formal name has been used for the chytrids by Copeland in 1956), and was supported by later genetic studies.[10]

Early phylogenies placed fungi near the plants and other groups that have mitochondria with flat cristae, but this character varies. More recently, it has been said that holozoa (animals) and holomycota (fungi) are much more closely related to each other than either is to plants, because opisthokonts have a triple fusion of carbamoyl phosphate synthetase, dihydroorotase, and aspartate carbamoyltransferase that is not present in plants, and plants have a fusion of thymidylate synthase and dihydrofolate reductase not present in the opisthokonts. Animals and fungi are also more closely related to amoebas than to plants, and plants are more closely related to the SAR supergroup of protists than to animals or fungi. Animals and fungi are both heterotrophs, unlike plants, and while fungi are sessile like plants, there are also sessile animals.

Cavalier-Smith and Stechmann argue that the uniciliate eukaryotes such as opisthokonts and Amoebozoa, collectively called unikonts, split off from the other biciliate eukaryotes, called bikonts, shortly after they evolved.[11]

Taxonomy

Opisthokonts are divided into Holomycota or Nucletmycea (fungi and all organisms more closely related to fungi than to animals) and Holozoa (animals and all organisms more closely related to animals than to fungi); no opisthokonts basal to the Holomycota/Holozoa split have yet been identified. The Opisthokonts was largely resolved by Torriella et al.[12] Holomycota and Holozoa are composed of the following groups.

Phylogeny

The following phylogenetic tree indicates the evolutionary relationships between the different opisthokont lineages, and the time divergence of the clades in millions of years ago (Mya).[14] [15] [16]

External links

Notes and References

  1. Shalchian-Tabrizi K, Minge MA, Espelund M, Orr R, Ruden T, Jakobsen KS, Cavalier-Smith T . Multigene phylogeny of choanozoa and the origin of animals . PLOS ONE . 3 . 5 . e2098 . May 2008 . 18461162 . 2346548 . 10.1371/journal.pone.0002098 . Aramayo R . free . 2008PLoSO...3.2098S .
  2. Web site: Fungi/Metazoa group . https://web.archive.org/web/20090217194952/https://www.uniprot.org/taxonomy/33154 . 17 February 2009 . UniProt . 2009-03-08.
  3. Steenkamp ET, Wright J, Baldauf SL . The protistan origins of animals and fungi . Molecular Biology and Evolution . 23 . 1 . 93–106 . January 2006 . 16151185 . 10.1093/molbev/msj011 . free .
  4. The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic . Molecular Biology and Evolution . 22 . 11 . 2142–2146 . November 2005 . 16049196 . 10.1093/molbev/msi221 . free . Huang . Jinling . Xu . Ying . Gogarten . Johann Peter .
  5. Parfrey LW, Barbero E, Lasser E, Dunthorn M, Bhattacharya D, Patterson DJ, Katz LA . Laura Wegener Parfrey . Evaluating support for the current classification of eukaryotic diversity . PLOS Genetics . 2 . 12 . e220 . December 2006 . 17194223 . 1713255 . 10.1371/journal.pgen.0020220 . free .
  6. Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains . Molecular Biology and Evolution . 29 . 2 . 531–544 . February 2012 . 21771718 . 3350318 . 10.1093/molbev/msr185 . Torruella . G. . Derelle . R. . Paps . J. . Lang . B. F. . Roger . A. J. . Shalchian-Tabrizi . K. . Ruiz-Trillo . I. .
  7. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks . Cold Spring Harbor Perspectives in Biology . 6 . 8 . a016139 . August 2014 . 25085908 . 4107988 . 10.1101/cshperspect.a016139 . Eme . L. . Sharpe . S. C. . Brown . M. W. . Roger . A. J. .
  8. 6 . Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes . The Journal of Eukaryotic Microbiology . 66 . 1 . 4–119 . January 2019 . 30257078 . 6492006 . 10.1111/jeu.12691 . Adl . Sina M. . Bass . David . Lane . Christopher E. . Lukeš . Julius . Schoch . Conrad L. . Smirnov . Alexey . Agatha . Sabine . Berney . Cedric . Brown . Matthew W. . Burki . Fabien . Cárdenas . Paco . Čepička . Ivan . Chistyakova . Lyudmila . Del Campo . Javier . Dunthorn . Micah . Edvardsen . Bente . Eglit . Yana . Guillou . Laure . Hampl . Vladimír . Heiss . Aaron A. . Hoppenrath . Mona . James . Timothy Y. . Karnkowska . Anna . Karpov . Sergey . Kim . Eunsoo . Kolisko . Martin . Kudryavtsev . Alexander . Lahr . Daniel J.G. . Lara . Enrique . Le Gall . Line .
  9. Book: Thomas Cavalier-Smith . The origin of fungi and pseudofungi . Rayner, Alan D. M.. Evolutionary biology of Fungi . Cambridge University Press . Cambridge . 1987 . 0-521-33050-5 . 339–353.
  10. Wainright PO, Hinkle G, Sogin ML, Stickel SK . Monophyletic origins of the metazoa: an evolutionary link with fungi . Science . 260 . 5106 . 340–342 . April 1993 . 8469985 . 10.1126/science.8469985 . 27373608 . 1993Sci...260..340W .
  11. Rooting the eukaryote tree by using a derived gene fusion . Science . 297 . 5578 . 89–91 . July 2002 . 12098695 . 10.1126/science.1071196 . Thomas Cavalier-Smith . 21064445 . 2002Sci...297...89S . Stechmann . Alexandra . Cavalier-Smith . Thomas .
  12. 6 . Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi . Current Biology . 25 . 18 . 2404–2410 . September 2015 . 26365255 . 10.1016/j.cub.2015.07.053 . free . Torruella . Guifré . De Mendoza . Alex . Grau-Bové . Xavier . Antó . Meritxell . Chaplin . Mark A. . Del Campo . Javier . Eme . Laura . Pérez-Cordón . Gregorio . Whipps . Christopher M. . Nichols . Krista M. . Paley . Richard . Roger . Andrew J. . Sitjà-Bobadilla . Ariadna . Donachie . Stuart . Ruiz-Trillo . Iñaki .
  13. Phylogeny of the "forgotten" cellular slime mold, Fonticula alba, reveals a key evolutionary branch within Opisthokonta . Molecular Biology and Evolution . 26 . 12 . 2699–2709 . December 2009 . 19692665 . 10.1093/molbev/msp185 . free . Brown . M. W. . Spiegel . F. W. . Silberman . J. D. .
  14. 6 . 2018 . High-level classification of the Fungi and a tool for evolutionary ecological analyses . Fungal Diversity . 90 . 1 . 135–159 . 10.1007/s13225-018-0401-0 . 1560-2745 . free . Tedersoo . Leho . Sánchez-Ramírez . Santiago . Kõljalg . Urmas . Bahram . Mohammad . Döring . Markus . Schigel . Dmitry . May . Tom . Ryberg . Martin . Abarenkov . Kessy .
  15. Phylogenomics Supports the Monophyly of Aphelids and Fungi and Identifies New Molecular Synapomorphies . Systematic Biology . 72 . 3 . 505–515 . June 2023 . 35900180 . 10.1093/sysbio/syac054 . Galindo . Luis Javier . Torruella . Guifré . López-García . Purificación . Ciobanu . Maria . Gutiérrez-Preciado . Ana . Karpov . Sergey A. . Moreira . David .
  16. 6 . New Lineage of Microbial Predators Adds Complexity to Reconstructing the Evolutionary Origin of Animals . Current Biology . 30 . 22 . 4500–4509.e5 . November 2020 . 32976804 . 10.1016/j.cub.2020.08.061 . free . Tikhonenkov . Denis V. . Mikhailov . Kirill V. . Hehenberger . Elisabeth . Karpov . Sergei A. . Prokina . Kristina I. . Esaulov . Anton S. . Belyakova . Olga I. . Mazei . Yuri A. . Mylnikov . Alexander P. . Aleoshin . Vladimir V. . Keeling . Patrick J. .