In numerical analysis, a numerical method is a mathematical tool designed to solve numerical problems. The implementation of a numerical method with an appropriate convergence check in a programming language is called a numerical algorithm.
Let
F(x,y)=0
F:X x Y → R
X
Y
g:X → Y
(x,y)
F
y=g(x)
F(x,y)=0
\left\{Mn\right\}n=\left\{Fn(xn,yn)=0\right\}n,
with
Fn:Xn x Yn → R
xn\inXn
yn\inYn
n\inN
Necessary conditions for a numerical method to effectively approximate
F(x,y)=0
xn → x
Fn
F
n → infty
\left\{Fn\right\}n
F
S
\limFn(x,y+t)=F(x,y,t)=0, \forall(x,y,t)\inS.
When
Fn=F,\foralln\inN
S
Denote by
\elln
x\inX
M
x+\elln\inXn\foralln\inN
yn(x+\elln)\inYn
Fn(x+\elln,yn(x+\elln))=0
F(x,y)=0
\begin{align} &\forall\varepsilon>0,\existn0(\varepsilon)>0,\exist
\delta | |
\varepsilon,n0 |
suchthat\\ &\foralln>n0,\forall\elln:\|\elln\|<
\delta | |
\varepsilon,n0 |
⇒ \|yn(x+\elln)-y\|\leq\varepsilon. \end{align}
One can easily prove that the point-wise convergence of
\{yn\}n
y