np-chart | |||||||||||||||||||
Proposer: | Walter A. Shewhart | ||||||||||||||||||
Subgroupsize: | n > 1 | ||||||||||||||||||
Measurementtype: | Number nonconforming per unit | ||||||||||||||||||
Qualitycharacteristictype: | Attributes data | ||||||||||||||||||
Distribution: | Binomial distribution | ||||||||||||||||||
Sizeofshift: | ≥ 1.5σ | ||||||||||||||||||
Meanchart: | Np control chart.svg | ||||||||||||||||||
Meancenter: | n\barp=
&ifxijdefective\ 0&otherwise\end{cases}}{m} | ||||||||||||||||||
Meanlimits: | n\barp\pm3\sqrt{n\barp(1-\barp)} | ||||||||||||||||||
Meanstatistic: | n\barpi=
\begin{cases}1&ifxijdefective\ 0&otherwise\end{cases} |
In statistical quality control, the np-chart is a type of control chart used to monitor the number of nonconforming units in a sample. It is an adaptation of the p-chart and used in situations where personnel find it easier to interpret process performance in terms of concrete numbers of units rather than the somewhat more abstract proportion.[1]
The np-chart differs from the p-chart in only the three following aspects:
n\barp\pm3\sqrt{n\barp(1-\barp)}
\barp
n