In mathematics, specifically abstract algebra, if
(G,+)
e
\nu\colonG\toR
(G,+)
\nu(g)>0forallg\neeand\nu(e)=0
\nu(g+h)\le\nu(g)+\nu(h)
\nu(-g)=\nu(g)forallg\inG
An alternative, stronger definition of a norm on
(G,+)
\nu(g)>0forallg\nee
\nu(g+h)\le\nu(g)+\nu(h)
\nu(mg)=|m|\nu(g)forallm\inZ
The norm
\nu
\rho>0
\nu(g)>\rho
g\ne0
An abelian group is a free abelian group if and only if it has a discrete norm.