Norm (abelian group) explained

In mathematics, specifically abstract algebra, if

(G,+)

is an (abelian) group with identity element

e

then

\nu\colonG\toR

is said to be a norm on

(G,+)

if:
  1. Positive definiteness

\nu(g)>0forallg\neeand\nu(e)=0

,
  1. Subadditivity

\nu(g+h)\le\nu(g)+\nu(h)

,
  1. Inversion (Symmetry):

\nu(-g)=\nu(g)forallg\inG

.[1]

An alternative, stronger definition of a norm on

(G,+)

requires

\nu(g)>0forallg\nee

,

\nu(g+h)\le\nu(g)+\nu(h)

,

\nu(mg)=|m|\nu(g)forallm\inZ

.

The norm

\nu

is discrete if there is some real number

\rho>0

such that

\nu(g)>\rho

whenever

g\ne0

.

Free abelian groups

An abelian group is a free abelian group if and only if it has a discrete norm.

Notes and References

  1. Bingham . N.H. . Ostaszewski . A.J. . Normed versus topological groups: Dichotomy and duality . Dissertationes Mathematicae . 2010 . 472 . 4. 10.4064/dm472-0-1 . free .