Noncentral F-distribution explained

In probability theory and statistics, the noncentral F-distribution is a continuous probability distribution that is a noncentral generalization of the (ordinary) F-distribution. It describes the distribution of the quotient (X/n1)/(Y/n2), where the numerator X has a noncentral chi-squared distribution with n1 degrees of freedom and the denominator Y has a central chi-squared distribution with n2 degrees of freedom. It is also required that X and Y are statistically independent of each other.

It is the distribution of the test statistic in analysis of variance problems when the null hypothesis is false. The noncentral F-distribution is used to find the power function of such a test.

Occurrence and specification

If

X

is a noncentral chi-squared random variable with noncentrality parameter

λ

and

\nu1

degrees of freedom, and

Y

is a chi-squared random variable with

\nu2

degrees of freedom that is statistically independent of

X

, then
F=X/\nu1
Y/\nu2

is a noncentral F-distributed random variable.The probability density function (pdf) for the noncentral F-distribution is[1]
inftye/2(λ/2)k
B\left(\nu2
2
,\nu1
2
+k\right)k!
p(f) =\sum\limits\left(
k=0
\nu1
\nu2
\nu1+k
2
\right)\left(
\nu2
\nu2+\nu1f
\nu1+\nu2+k
2
\right)
\nu1/2-1+k
f

when

f\ge0

and zero otherwise.The degrees of freedom

\nu1

and

\nu2

are positive.The term

B(x,y)

is the beta function, where
B(x,y)=\Gamma(x)\Gamma(y)
\Gamma(x+y)

.

The cumulative distribution function for the noncentral F-distribution is

F(x\midd1,d2,λ)=\sum\limits

infty\left(
\left(1λ\right)j
2
j!
j=0

e/2\right)I\left(

d1x|
d2+d1x
d1+j,
2
d2
2

\right)

where

I

is the regularized incomplete beta function.

The mean and variance of the noncentral F-distribution are

\operatorname{E}[F] \begin{cases} =

\nu2(\nu1+λ)
\nu1(\nu2-2)

&if\nu2>2\\ doesnotexist&if\nu2\le2\\ \end{cases}

and

\operatorname{Var}[F] \begin{cases} =2

2+(\nu
(\nu2-2)
1+2λ)(\nu
\left(
2(\nu
(\nu
2-4)
\nu2
\nu1

\right)2 &if\nu2>4\\ doesnotexist &if\nu2\le4.\\ \end{cases}

Special cases

When λ = 0, the noncentral F-distribution becomes theF-distribution.

Related distributions

Z has a noncentral chi-squared distribution if

Z=\lim
\nu2\toinfty

\nu1F

where F has a noncentral F-distribution.

See also noncentral t-distribution.

Implementations

The noncentral F-distribution is implemented in the R language (e.g., pf function), in MATLAB (ncfcdf, ncfinv, ncfpdf, ncfrnd and ncfstat functions in the statistics toolbox) in Mathematica (NoncentralFRatioDistribution function), in NumPy (random.noncentral_f), and in Boost C++ Libraries.[2]

A collaborative wiki page implements an interactive online calculator, programmed in the R language, for the noncentral t, chi-squared, and F distributions, at the Institute of Statistics and Econometrics, School of Business and Economics, Humboldt-Universität zu Berlin.[3]

Notes

  1. S. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, (New Jersey: Prentice Hall, 1998), p. 29.
  2. Web site: Noncentral F Distribution: Boost 1.39.0 . John Maddock . Paul A. Bristow . Hubert Holin . Xiaogang Zhang . Bruno Lalande . Johan Råde . Boost.org . 20 August 2011.
  3. Web site: Comparison of noncentral and central distributions . Sigbert Klinke . 10 December 2008 . Humboldt-Universität zu Berlin.

References