Desulfobacterales Explained
Desulfobacterales are an order of sulfate-reducing bacteria within the phylum Thermodesulfobacteria.[1] The order contains three families; Desulfobacteraceae, Desulfobulbaceae, and Nitrospinaceae.[2] The bacterium in this order are strict anaerobic respirators, using sulfate or nitrate as the terminal electron acceptor instead of oxygen. Desulfobacterales can degrade ethanol, molecular hydrogen, organic acids, and small hydrocarbons.[3] The bacterium of this order have a wide ecological range and play important environmental roles in symbiotic relationships and nutrient cycling.
Habitat
Desulfobacterales are found globally and often in extreme environments, such as deep-sea hydrothermal vents, hot springs, marine sediment, and solfataric fields, an area of volcanic venting that gives off sulfurous gases.[4] [5]
Symbiotic relationships
Sulfate-reduction by Desulfobacteraceae and Desulfobulbaceae in coastal marine sediments plays an important role in molecular hydrogen cycling through a close relationship with fermenting microorganisms.[6] Fermenting microbes break down organic materials on the seafloor and produce molecular oxygen and organic acids. Molecular hydrogen is an essential electron donor used by Desulfobacterales; they use the molecular hydrogen produced by fermentation to drive sulfate reduction. This feedback loop maintains molecular hydrogen at an energetically favorable level for fermenting respiration and provides ample molecular hydrogen for sulfate reduction.
Nitrogen cycling
Human activity, such as increased fertilizer use, has caused nitrogen pollution in inland and coastal waters. An influx of nitrogen inputs into aquatic ecosystems can cause negative effects such as eutrophication, resulting in anoxic conditions.[7] Desulfobacterales are important in nitrogen pollution mitigation in coastal mangrove ecosystems through nitrate reduction.[8] Nitrate is reduced by Desulfobacterales species via dissimilatory nitrate reduction genes. Dissimilatory nitrate reduction accounts for roughly 75.7–85.9% of nitrate reduction in mangrove ecosystems. Dissimilatory nitrate reduction is important because nitrate is reduced to ammonium, which can then be taken up by other microorganisms and plants in the system.
Phylogeny
The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN)[9] and National Center for Biotechnology Information (NCBI)[10]
See also
Notes and References
- Waite . David W . Chuvochina . Maria . Pelikan . Claus . Parks . Donovan H . Yilmaz . Pelin . Wagner . Michael . Loy . Alexander . Naganuma . Takeshi . Nakai . Ryosuke . Whitman . William B . Hahn . Martin W . Kuever . Jan . Hugenholtz . PhilipYR 2020 . Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities . International Journal of Systematic and Evolutionary Microbiology . 2020 . 70 . 11 . 5972–6016 . 10.1099/ijsem.0.004213 . 33151140 . 226257730 . 1466-5034. free .
- Web site: ITIS - Report: Desulfobacterales . 2022-10-02 . www.itis.gov.
- Marozava . Sviatlana . Mouttaki . Housna . Müller . Hubert . Laban . Nidal Abu . Probst . Alexander J. . Meckenstock . Rainer U. . 2018-02-01 . Anaerobic degradation of 1-methylnaphthalene by a member of the Thermoanaerobacteraceae contained in an iron-reducing enrichment culture . Biodegradation . en . 29 . 1 . 23–39 . 10.1007/s10532-017-9811-z . 1572-9729 . 5773621 . 29177812.
- Web site: solfatara geology . 2022-11-06 . www.britannica.com . en.
- Saini . Rashmi . Kapoor . Rupam . Kumar . Rita . Siddiqi . T. O. . Kumar . Anil . 2011-11-01 . CO2 utilizing microbes — A comprehensive review . Biotechnology Advances . en . 29 . 6 . 949–960 . 10.1016/j.biotechadv.2011.08.009 . 21856405 . 0734-9750.
- Dyksma . Stefan . Pjevac . Petra . Ovanesov . Kin . Mussmann . Marc . February 2018 . Evidence for H 2 consumption by uncultured Desulfobacterales in coastal sediments: H 2 -consuming sulfate reducers in coastal sediments . Environmental Microbiology . en . 20 . 2 . 450–461 . 10.1111/1462-2920.13880. 28772023 . 44713600 .
- Camargo . Julio A. . Alonso . Álvaro . 2006-08-01 . Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment . Environment International . en . 32 . 6 . 831–849 . 10.1016/j.envint.2006.05.002 . 16781774 . 10261/294824 . 0160-4120. free .
- Nie . Shiqing . Zhang . Zufan . Mo . Shuming . Li . Jinhui . He . Sheng . Kashif . Muhammad . Liang . Zhengwu . Shen . Peihong . Yan . Bing . Jiang . Chengjian . 2021-05-15 . Desulfobacterales stimulates nitrate reduction in the mangrove ecosystem of a subtropical gulf . Science of the Total Environment . en . 769 . 144562 . 10.1016/j.scitotenv.2020.144562 . 33460836 . 2021ScTEn.769n4562N . 231641138 . 0048-9697.
- Web site: A.C. Parte. Desulfobacterales. 2023-09-09. List of Prokaryotic names with Standing in Nomenclature (LPSN). et al..
- Web site: Sayers. Desulfobacterales. 2023-09-09. National Center for Biotechnology Information (NCBI) taxonomy database. et al..
- Web site: The LTP . 20 November 2023.
- Web site: LTP_all tree in newick format. 20 November 2023.
- Web site: LTP_08_2023 Release Notes. 20 November 2023.
- Web site: GTDB release 08-RS214 . Genome Taxonomy Database. 10 May 2023.
- Web site: bac120_r214.sp_label . Genome Taxonomy Database. 10 May 2023.
- Web site: Taxon History . Genome Taxonomy Database. 10 May 2023.