ak{g}
ak{g}\geq[ak{g},ak{g}]\geq[ak{g},[ak{g},ak{g}]]\geq[ak{g},[ak{g},[ak{g},ak{g}]]]\geq...
We write
ak{g}0=ak{g}
ak{g}n=[ak{g},ak{g}n-1]
n>0
The nilpotent Lie algebras are precisely those that can be obtained from abelian Lie algebras, by successive central extensions.
Note that the definition means that, viewed as a non-associative non-unital algebra, a Lie algebra
ak{g}
Let
ak{g}
ak{g}
ak{g}n=0
n\inN.
Explicitly, this means that
[X1,[X2,[ … [Xn,Y] … ]]=
ad | |
X1 |
ad | |
X2 |
… ad | |
Xn |
Y=0
\forallX1,X2,\ldots,Xn,Y\inak{g}, (1)
A very special consequence of (1) is that
[X,[X,[ … [X,Y] … ]=
n | |
{ad | |
X} |
Y\inak{g}n=0 \forallX,Y\inak{g}. (2)
X\inak{g}
ak{g}
Remarkably, if
ak{g}
Engel's theorem: A finite dimensional Lie algebra
ak{g}
ak{g}
which we will not prove here.
A somewhat easier equivalent condition for the nilpotency of
ak{g}
ak{g}
adak{g}
adak{g}
[[ … [Xn,Xn-1], … ,X2],X1]=ad[ … [Xn,Xn-1], … ,X2](X1),
\begin{align}ad[ … [Xn,Xn-1], … ,X2]&=[ad[ … [Xn,Xn-1], … X3],
ad | |
X2 |
]\\ &=\ldots=
[ … [ad | |
Xn |
,
ad | |
Xn-1 |
], …
ad | |
X2 |
].\end{align}
adak{g}
ak{g}
Also, a finite-dimensional Lie algebra is nilpotent if and only if there exists a descending chain of ideals
akg=akg0\supsetakg1\supset … \supsetakgn=0
[akg,akgi]\subsetakgi+1
If
ak{gl}(k,R)
R
A Heisenberg algebra is nilpotent. For example, in dimension 3, the commutator of two matrices
where\left[\begin{bmatrix} 0&a&b\\ 0&0&c\\ 0&0&0 \end{bmatrix},\begin{bmatrix} 0&a'&b'\\ 0&0&c'\\ 0&0&0 \end{bmatrix} \right] = \begin{bmatrix} 0&0&a''\\ 0&0&0\\ 0&0&0 \end{bmatrix}
a''=ac'-a'c
ak{c}
ak{l}
ak{c}=Nak{l}(ak{c})=\{x\inak{l}:[x,c]\subsetak{c}forc\inak{c}\}
ak{t}(n)
ak{d}(n)
ak{gl}(n)
ak{g}
ak{g}
Every nilpotent Lie algebra is solvable. This is useful in proving the solvability of a Lie algebra since, in practice, it is usually easier to prove nilpotency (when it holds!) rather than solvability. However, in general, the converse of this property is false. For example, the subalgebra of
ak{gl}(k,R)
ak{b}(k,R)
ak{g}
ak{g}/Z(akg)
Z(ak{g})
ak{g}
ak{g}
A finite dimensional Lie algebra
ak{g}
ak{g}
The Killing form of a nilpotent Lie algebra is .
A nonzero nilpotent Lie algebra has an outer automorphism, that is, an automorphism that is not in the image of Ad.
The derived subalgebra of a finite dimensional solvable Lie algebra over a field of characteristic 0 is nilpotent.
. A. W. Knapp. Lie groups beyond an introduction. 0-8176-4259-5. Birkhäuser. Progress in Mathematics. 120. 2nd. 2002. Boston·Basel·Berlin.