Neuromodulation (medicine) explained
Neuromodulation (medicine) |
Neuromodulation is "the alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body". It is carried out to normalize – or modulate – nervous tissue function. Neuromodulation is an evolving therapy that can involve a range of electromagnetic stimuli such as a magnetic field (rTMS), an electric current, or a drug instilled directly in the subdural space (intrathecal drug delivery). Emerging applications involve targeted introduction of genes or gene regulators and light (optogenetics), and by 2014, these had been at minimum demonstrated in mammalian models, or first-in-human data had been acquired.[1] The most clinical experience has been with electrical stimulation.
Neuromodulation, whether electrical or magnetic, employs the body's natural biological response by stimulating nerve cell activity that can influence populations of nerves by releasing transmitters, such as dopamine, or other chemical messengers such as the peptide Substance P, that can modulate the excitability and firing patterns of neural circuits. There may also be more direct electrophysiological effects on neural membranes as the mechanism of action of electrical interaction with neural elements. The end effect is a "normalization" of a neural network function from its perturbed state. Presumed mechanisms of action for neurostimulation include depolarizing blockade, stochastic normalization of neural firing, axonal blockade, reduction of neural firing keratosis, and suppression of neural network oscillations.[2] Although the exact mechanisms of neurostimulation are not known, the empirical effectiveness has led to considerable application clinically.
Existing and emerging neuromodulation treatments also include application in medication-resistant epilepsy,[3] chronic head pain conditions, and functional therapy ranging from bladder and bowel or respiratory control to improvement of sensory deficits, such as hearing (cochlear implants and auditory brainstem implants) and vision (retinal implants).[4] Technical improvements include a trend toward minimally invasive (or noninvasive) systems; as well as smaller, more sophisticated devices that may have automated feedback control,[5] and conditional compatibility with magnetic resonance imaging.[6] [7]
Neuromodulation therapy has been investigated for other chronic conditions, such as Alzheimer's disease, depression, chronic pain,[8] [9] and as an adjunctive treatment in recovery from stroke.[10] [11]
Invasive electrical neuromodulation methods
Electrical stimulation using implantable devices came into modern usage in the 1980s and its techniques and applications have continued to develop and expand.[12] These are methods where an operation is required to position an electrode. The stimulator, with the battery, similar to a pacemaker, may also be implanted, or may remain outside the body.
In general, neuromodulation systems deliver electrical currents and typically consist of the following components: An epidural, subdural or parenchymal electrode placed via minimally invasive needle techniques (so-called percutaneous leads) or an open surgical exposure to the target (surgical "paddle" or "grid" electrodes), or stereotactic implants for the central nervous system, and an implanted pulse generator (IPG). Depending on the distance from the electrode access point an extension cable may also be added into the system. The IPG can have either a non-rechargeable battery needing replacement every 2–5 years (depending on stimulation parameters) or a rechargeable battery that is replenished via an external inductive charging system.
Although most systems operate via delivery of a constant train of stimulation, there is now the advent of so-called "feed-forward" stimulation where the device's activation is contingent on a physiological event, such as an epileptic seizure. In this circumstance, the device is activated and delivers a desynchronizing pulse to the cortical area that is undergoing an epileptic seizure. This concept of feed-forward stimulation will likely become more prevalent as physiological markers of targeted diseases and neural disorders are discovered and verified.[13] The on-demand stimulation may contribute to longer battery life, if sensing and signal-processing demands of the system are sufficiently power-efficient. New electrode designs could yield more efficient and precise stimulation, requiring less current and minimizing unwanted side-stimulation. In addition, to overcome the challenge of preventing lead migration in areas of the body that are subject to motion such as turning and bending, researchers are exploring developing small stimulation systems that are recharged wirelessly rather than through an electrical lead.[14]
Spinal cord stimulation
See main article: Spinal cord stimulation. Spinal cord stimulation is a form of invasive neuromodulation therapy in common use since the 1980s. Its principal use is as a reversible, non-pharmacological therapy for chronic pain management that delivers mild electrical pulses to the spinal cord.[15] In patients who experience pain reduction of 50 percent or more during a temporary trial, a permanent implant may be offered in which, as with a cardiac pacemaker, an implantable pulse generator about the size of a stopwatch is placed under the skin on the trunk. It delivers mild impulses along slender electrical leads leading to small electrical contacts, about the size of a grain of rice, at the area of the spine to be stimulated.[16]
Stimulation is typically in the 20–200 Hz range, though a novel class of stimulation parameters are now emerging that employ a 10 kHz stimulation train as well as 500 Hz "burst stimulation". Kilohertz stimulation trains have been applied to both the spinal cord proper as well as the dorsal root ganglion in humans. All forms of spinal cord stimulation have been shown to have varying degrees of efficacy to address a variety of pharmacoresistant neuropathic or mixed (neuropathic and noiciceptive) pain syndromes such as post-laminectomy syndrome, low back pain, complex regional pain syndrome, peripheral neuropathy, peripheral vascular disease and angina.[17]
The general process for spinal cord stimulation involves a temporary trailing of appropriate patients with an external pulse generator attached to epidural electrodes located in the lower thoracic spinal cord. The electrodes are placed either via a minimally invasive needle technique (so-called percutaneous leads) or an open surgical exposure (surgical "paddle" electrodes).
Patient selection is key, and candidates should pass rigorous psychological screening as well as a medical workup to assure that their pain syndrome is truly medication-resistant. After recuperating from the implant procedure, the patient will return to have the system turned on and programmed. Depending on the system, the program may elicit a tingling sensation that covers most of the painful area, replacing some of the painful sensations with more of a gentle massaging sensation, although other more recent systems do not create a tingling sensation. The patient is sent home with a handheld remote controller to turn the system off or on or switch between pre-set stimulation parameters, and can follow up to adjust the parameters.
Deep brain stimulation
See main article: Deep brain stimulation. Another invasive neuromodulation treatment developed in the 1980s is deep brain stimulation, which may be used to help limit symptoms of movement disorder in Parkinson's disease, dystonia, or essential tremor.[18] Deep brain stimulation was approved by the U.S. Food and Drug Administration in 1997 for essential tremor, in 2002 for Parkinson's disease, and received a humanitarian device exemption from the FDA in 2003 for motor symptoms of dystonia. It was approved in 2010 in Europe for the treatment of certain types of severe epilepsy.[19] DBS also has shown promise, although still in research, for medically intractable psychiatric syndromes of depression, obsessive compulsive disorders, intractable rage, dementia, and morbid obesity. It has also shown promise for Tourette syndrome, torticollis, and tardive dyskinesia. DBS therapy, unlike spinal cord stimulation, has a variety of central nervous system targets, depending on the target pathology. For Parkinson's disease central nervous system targets include the subthalamic nucleus, globus pallidus interna, and the ventral intermidus nucleus of the thalamus. Dystonias are often treated by implants targeting globus pallidus interna, or less often, parts of the ventral thalamic group. The anterior thalamus is the target for epilepsy.[20] [21] [22]
DBS research targets include, but are not limited to the following areas: Cg25 for depression, the anterior limb of the internal capsule for depression as well as obsessive compulsive disorder (OCD), centromedian/parafasicularis, centromedian thalamic nuclei and the subthalamic nucleus for OCD, anorexia and Tourette syndrome, the nucleus accumbens and ventral striatum have also been assayed for depression and pain.[21] [22]
Other invasive electrical methods
Non-invasive electrical methods
These methods use external electrodes to apply a current to the body in order to change the functioning of the nervous system.
Methods include:
Non-invasive magnetic methods
Magnetic methods of neuromodulation are normally non-invasive: no surgery is required to allow a magnetic field to enter the body because the magnetic permeability of tissue is similar to that of air. In other words: magnetic fields penetrate the body very easily.
The two main techniques are highly related in that both use changes in magnetic field strength to induce electric fields and ionic currents in the body. There are however differences in approach and hardware. In rTMS the stimulation has a high amplitude (0.5–3 tesla), a low complexity and anatomical specificity is reached through a highly focal magnetic field. In tPEMF the stimulation has a low amplitude (0.01–500 millitesla), a high complexity and anatomical specificity is reached through the specific frequency content of the signal.[25]
Limitations of non-invasive electrical and magnetic methods
Brain tissue stimulation using non-invasive electrical and magnetic methods raises several concerns, including the following:
The first issue is the uncertain dose for healthy stimulation.[26] While neurophysiology lacks knowledge about the nature of such a treatment of nervous diseases at the cellular level,[27] non-invasive electrical and magnetic therapies involve excessive exposure of the brain to an intense field, which is several times and even orders of magnitude higher than natural electromagnetic fields in the brain.[28] [29]
Another significant challenge of non-invasive electrical and magnetic methods is to localize the effect of stimulation on specific neuronal networks that need to be treated.[30] [31] We still need to gain knowledge about mental processes at the cellular level. Neuronal correlates of cognitive functions are still intriguing questions for contemporary research. Non-invasive electrical and magnetic brain tissue stimulation targets a large area of poorly characterized tissue. Therefore, it is unclear whether electrical and magnetic fields reach only the neuronal networks of the brain that need treatment. Again, these methods involve excessive exposure to intense electrical and magnetic fields several times and even orders of magnitude higher than natural ones in the brain. However, non-invasive electrical and magnetic brain tissue methods cannot target only the neuronal networks that need to be treated. The undefined radiation target can destroy healthy cells during therapy.
Additionally, these methods are not generalizable to all patients because of more inter-individual variability in response to brain stimulation.
Invasive chemical methods
Chemical neuromodulation is always invasive, because a drug is delivered in a highly specific location of the body. The non-invasive variant is traditional pharmacotherapy, e.g. swallowing a tablet.
- Intrathecal drug delivery systems (ITDS, which may deliver micro-doses of painkiller (for instance, ziconotide) or anti-spasm medicine (such as baclofen) directly to the site of action)
History
Electrical stimulation of the nervous system has a long and complex history. Earlier practitioners of deep brain stimulation in the latter half of the 20th century (Delgado, Heath, Hosbuchi. See Hariz et al. for historical review[32]) were limited by the technology available. Heath, in the 1950s, stimulated subcortical areas and made detailed observations of behavioral changes. A new understanding of pain perception was ushered in in 1965, with the Gate Theory of Wall and Melzack.[33] Although now considered oversimplified, the theory held that pain transmissions from small nerve fibers can be overridden, or the gate "closed", by competing transmissions along the wider touch nerve fibers. Building on that concept, in 1967, the first dorsal column stimulator for pain control was demonstrated by Dr. Norm Shealy at Western Reserve Medical School, using a design adapted by Tom Mortimer, a graduate student at Case Institute of Technology, from cardiac nerve stimulators by Medtronic, Inc., where he had a professional acquaintance who shared the circuit diagram. In 1973, Hosbuchi reported alleviating the denervation facial pain of anesthesia dolorosa through ongoing electrical stimulation of the somatosensory thalamus, marking the start of the age of deep brain stimulation.[12] [34] [35]
Despite the limited clinical experience in these decades, that era is remarkable for the demonstration of the role technology has in neuromodulation, and there are some case reports of deep brain stimulation for a variety of problems; real or perceived. Delgado hinted at the power of neuromodulation with his implants in the bovine septal region and the ability of electrical stimulation to blunt or alter behavior. Further attempts at this "behavioral modification" in humans were difficult and seldom reliable, and contributed to the overall lack of progress in central nervous system neuromodulation from that era. Attempts at intractable pain syndromes were met with more success, but again hampered by the quality of technology. In particular, the so-called DBS "zero" electrode, (consisting of a contact loop on its end) had an unacceptable failure rate and revisions were fraught with more risk than benefit. Overall, attempts at using electrical stimulation for "behavioral modification" were difficult and seldom reliable, slowing development of DBS. Attempts at addressing intractable pain syndromes with DBS were met with more success, but again hampered by the quality of technology. A number of physicians who hoped to address hitherto intractable problems sought development of more specialized equipment; for instance, in the 1960s, Wall's colleague Bill Sweet recruited engineer Roger Avery to make an implantable peripheral nerve stimulator. Avery started the Avery Company, which made a number of implantable stimulators. Shortly before his retirement in 1983, he submitted data requested by the FDA, which had begun to regulate medical devices following a 1977 meeting on the topic, regarding DBS for chronic pain. Medtronic and Neuromed also made deep brain stimulators at the time, but reportedly felt a complex safety and efficacy clinical trial in patients who were difficult to evaluate would be too costly for the size of the potential patient base, so did not submit clinical data on DBS for chronic pain to the FDA, and that indication was de-approved.[12]
However, near this time in France and elsewhere, DBS was investigated as a substitute for lesioning of brain nuclei to control motor symptoms of movement disorders such as Parkinson's disease, and by the mid-1990s, this reversible, non-destructive stimulation therapy had become the primary application of DBS in appropriate patients, to slow progression of movement impairment from the disease and reduce side effects from long-term, escalating medication use.[36]
In parallel to the development of neuromodulation systems to address motor impairment, cochlear implants were the first neuromodulation system to reach a broad commercial stage to address a functional deficit; they provide sound perception in users who are hearing-impaired due to missing or damaged sensory cells (cilia) in the inner ear. The approach to electrical stimulation used in cochlear implants was soon modified by one manufacturer, Boston Scientific Corporation, for design of electrical leads to be used in spinal cord stimulation treatment of chronic pain conditions.[12]
Relationship to electroceuticals
In 2012, the global pharmaceutical company GlaxoSmithKline announced an initiative in bioelectric medicine in which the autonomic nervous system's impact on the immune system and inflammatory disease might be treated through electrical stimulation rather than pharmaceutical agents. The company's first investment in 2013 involved a small startup company, SetPoint Medical, which was developing neurostimulators to address inflammatory autoimmune disorders such as rheumatoid arthritis.[37] [38] [39]
Ultimately, the electroceuticals quest aims to find the electro-neural signature of disease and at a cellular level, in real time, play back the more normal electro-signature to help maintain the neural signature in the normal state. Unlike preceding neuromodulation therapy methods, the approach would not involve electrical leads stimulating large nerves or spinal cords or brain centers. It might involve methods that are emerging within the neuromodulation family of therapies, such as optogenetics or some new nanotechnology. Disease states and conditions that have been discussed as targets for future electroceutical therapy include diabetes, infertility, obesity, rheumatoid arthritis, and autoimmune disorders.[40]
See also
Further reading
- Aló KM, Holsheimer J . New trends in neuromodulation for the management of neuropathic pain . Neurosurgery . 50 . 4 . 690–703; discussion 703–4 . April 2002 . 11904018 . 10.1097/00006123-200204000-00003 . 1081499 .
- Althaus J: A Treatise on Medical Electricity, Theoretical and Practical; and Its Use in the Treatment of Paralysis, Neuralgia, and Other Diseases Philadelphia, Lindsay & Blakiston, 1860;163-170.
- Andrews RJ . Neuromodulation: advances in the next five years . Annals of the New York Academy of Sciences . 1199 . 204–11 . June 2010 . 20633126 . 10.1111/j.1749-6632.2009.05379.x . 222083466 .
- Attal N, Cruccu G, Haanpää M, Hansson P, Jensen TS, Nurmikko T, Sampaio C, Sindrup S, Wiffen P . 6 . EFNS guidelines on pharmacological treatment of neuropathic pain . European Journal of Neurology . 13 . 11 . 1153–69 . November 2006 . 17038030 . 10.1111/j.1468-1331.2006.01511.x . 15446990 . free .
- Ben-Menachem E . Vagus nerve stimulation, side effects, and long-term safety . Journal of Clinical Neurophysiology . 18 . 5 . 415–8 . September 2001 . 11709646 . 10.1097/00004691-200109000-00005 . 1263798 .
- Beric A, Kelly PJ, Rezai A, Sterio D, Mogilner A, Zonenshayn M, Kopell B . Complications of deep brain stimulation surgery . Stereotactic and Functional Neurosurgery . 77 . 1–4 . 73–8 . 2001 . 12378060 . 10.1159/000064600 . 30103603 .
- Deer TR, Prager J, Levy R, Rathmell J, Buchser E, Burton A, Caraway D, Cousins M, De Andrés J, Diwan S, Erdek M, Grigsby E, Huntoon M, Jacobs MS, Kim P, Kumar K, Leong M, Liem L, McDowell GC, Panchal S, Rauck R, Saulino M, Sitzman BT, Staats P, Stanton-Hicks M, Stearns L, Wallace M, Willis KD, Witt W, Yaksh T, Mekhail N . 6 . Polyanalgesic Consensus Conference 2012: recommendations for the management of pain by intrathecal (intraspinal) drug delivery: report of an interdisciplinary expert panel . Neuromodulation . 15 . 5 . 436–64; discussion 464–6 . 2012 . 22748024 . 10.1111/j.1525-1403.2012.00476.x . 10011197 .
- de Vos CC, Meier K, Zaalberg PB, Nijhuis HJ, Duyvendak W, Vesper J, Enggaard TP, Lenders MW . 6 . Spinal cord stimulation in patients with painful diabetic neuropathy: a multicentre randomized clinical trial . Pain . 155 . 11 . 2426–31 . November 2014 . 25180016 . 10.1016/j.pain.2014.08.031 . 13364877 .
- Dormandy JA, Rutherford RB . Management of peripheral arterial disease (PAD). TASC Working Group. TransAtlantic Inter-Society Consensus (TASC) . Journal of Vascular Surgery . 31 . 1 Pt 2 . S1–S296 . January 2000 . 10666287 .
- Francisco GE, Hu MM, Boake C, Ivanhoe CB . Efficacy of early use of intrathecal baclofen therapy for treating spastic hypertonia due to acquired brain injury . Brain Injury . 19 . 5 . 359–64 . May 2005 . 16094783 . 10.1080/02699050400003999 . 26677114 .
- Francisco GE, Saulino MF, Yablon SA, Turner M . Intrathecal baclofen therapy: an update . PM & R . 1 . 9 . 852–8 . September 2009 . 19769920 . 10.1016/j.pmrj.2009.07.015 . 34407448 .
- Gaylor JM, Raman G, Chung M, Lee J, Rao M, Lau J, Poe DS . Cochlear implantation in adults: a systematic review and meta-analysis . JAMA Otolaryngology–Head & Neck Surgery . 139 . 3 . 265–72 . March 2013 . 23429927 . 10.1001/jamaoto.2013.1744 . free .
- Gildenberg PL . 2006 . History of electrical neuromodulation for chronic pain . Pain Med . 7 . S7–S13 . 10.1111/j.1526-4637.2006.00118.x. free .
- Gracies JM, Nance P, Elovic E, McGuire J, Simpson DM . 1997 . Traditional pharmacological treatments for spacticity part I: local treatments . 10.1002/(SICI)1097-4598(1997)6+<61::AID-MUS6>3.0.CO;2-H . Muscle Nerve . 6 . S6 . S1–S92 . 9483570 .
- Greenberg BD, Gabriels LA, Malone DA, Rezai AR, Friehs GM, Okun MS, Shapira NA, Foote KD, Cosyns PR, Kubu CS, Malloy PF, Salloway SP, Giftakis JE, Rise MT, Machado AG, Baker KB, Stypulkowski PH, Goodman WK, Rasmussen SA, Nuttin BJ . 6 . Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience . Molecular Psychiatry . 15 . 1 . 64–79 . January 2010 . 18490925 . 3790898 . 10.1038/mp.2008.55 .
- Web site: Recently-Approved Devices - VNS Therapy System - P970003s050 . https://web.archive.org/web/20160302154007/https://www.fda.gov/MedicalDevices/ProductsandMedicalProcedures/DeviceApprovalsandClearances/Recently-ApprovedDevices/ucm078532.htm . 2 March 2016 . 3 October 2012 . U.S. Food and Drug Administration .
- Jobst BC . Electrical stimulation in epilepsy: vagus nerve and brain stimulation . Current Treatment Options in Neurology . 12 . 5 . 443–53 . September 2010 . 20842599 . 10.1007/s11940-010-0087-4 . 26003637 .
- Kellaway P . The part played by electric fish in the early history of bioelectricity and electrotherapy . Bulletin of the History of Medicine . 20 . 2 . 112–37 . July 1946 . 20277440 .
- Kemler MA, de Vet HC, Barendse GA, van den Wildenberg FA, van Kleef M . Spinal cord stimulation for chronic reflex sympathetic dystrophy--five-year follow-up . The New England Journal of Medicine . 354 . 22 . 2394–6 . June 2006 . 16738284 . 10.1056/nejmc055504 . free .
- Krames ES, Monis S, Poree L, Deer T, Levy R . Using the SAFE principles when evaluating electrical stimulation therapies for the pain of failed back surgery syndrome . Neuromodulation . 14 . 4 . 299–311; discussion 311 . 2011 . 21992423 . 10.1111/j.1525-1403.2011.00373.x . 35191893 .
- Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M, Molet J, Thomson S, O'Callaghan J, Eisenberg E, Milbouw G, Buchser E, Fortini G, Richardson J, North RB . 6 . The effects of spinal cord stimulation in neuropathic pain are sustained: a 24-month follow-up of the prospective randomized controlled multicenter trial of the effectiveness of spinal cord stimulation . Neurosurgery . 63 . 4 . 762–70; discussion 770 . October 2008 . 18981888 . 10.1227/01.NEU.0000325731.46702.D9 . 115231676 .
- Mallet L, Polosan M, Jaafari N, Baup N, Welter ML, Fontaine D, du Montcel ST, Yelnik J, Chéreau I, Arbus C, Raoul S, Aouizerate B, Damier P, Chabardès S, Czernecki V, Ardouin C, Krebs MO, Bardinet E, Chaynes P, Burbaud P, Cornu P, Derost P, Bougerol T, Bataille B, Mattei V, Dormont D, Devaux B, Vérin M, Houeto JL, Pollak P, Benabid AL, Agid Y, Krack P, Millet B, Pelissolo A . 6 . Subthalamic nucleus stimulation in severe obsessive-compulsive disorder . The New England Journal of Medicine . 359 . 20 . 2121–34 . November 2008 . 19005196 . 10.1056/nejmoa0708514 . free .
- Mannheimer C, Eliasson T, Augustinsson LE, Blomstrand C, Emanuelsson H, Larsson S, Norrsell H, Hjalmarsson A . 6 . Electrical stimulation versus coronary artery bypass surgery in severe angina pectoris: the ESBY study . Circulation . 97 . 12 . 1157–63 . March 1998 . 9537342 . 10.1161/01.cir.97.12.1157 . free .
- Book: Petropoulou KB, Panourias IG, Rapidi CA, Sakas DE . The phenomenon of spasticity: A pathophysiological and clinical introduction to neuromodulation therapies . Operative Neuromodulation . Acta Neurochir. Suppl. . 97 . 1. 137–144 . 10.1007/978-3-211-33079-1_19. 17691369 . Acta Neurochirurgica Supplements . 2006 . 978-3-211-33078-4 .
- Book: Ratto C, Parello A, Donisi L, Doglietto GB . Operative Neuromodulation . Sacral neuromodulation in the treatment of defecation disorders . Acta Neurochirurgica. Supplement . 97 . Pt 1 . 341–50 . 17691395 . 10.1007/978-3-211-33079-1_45 . 978-3-211-33078-4 . Acta Neurochirurgica Supplements . 2006 .
- Book: Sakas DE, Simpson BA, Krames ES . Operative Neuromodulation Acta Neurochirurgica Supplements: An introduction to operative neuromodulation and functional neuroprosthetics, the new frontiers of clinical neuroscience and biotechnology. . Vienna . Springer . 2007 . 482 .
- Book: Schachter SC, Schmidt D . 2003 . Introduction . Vagus Nerve Stimulation. . 2nd . London, United Kingdom . Martin Dunitz .
- Sharan AD, Rezai AR. Neurostimulation for Epilepsy. In: Krames ES, Peckham HP, Rezai AR, eds. Neuromodulation. London: Elsevier; 2009:617–66.
- Slavin KV . History of peripheral nerve stimulation . Progress in Neurological Surgery . 24 . 1–15 . 2011 . 21422772 . 10.1159/000323002 . 978-3-8055-9489-9 .
- Slangen R, Schaper NC, Faber CG, Joosten EA, Dirksen CD, van Dongen RT, Kessels AG, van Kleef M . 6 . Spinal cord stimulation and pain relief in painful diabetic peripheral neuropathy: a prospective two-center randomized controlled trial . Diabetes Care . 37 . 11 . 3016–24 . November 2014 . 25216508 . 10.2337/dc14-0684 . free .
- Stanton-Hicks M, Salamon J . Stimulation of the central and peripheral nervous system for the control of pain . Journal of Clinical Neurophysiology . 14 . 1 . 46–62 . January 1997 . 9013359 . 10.1097/00004691-199701000-00004 .
- Sun FT, Morrell MJ, Wharen RE . Responsive cortical stimulation for the treatment of epilepsy . Neurotherapeutics . 5 . 1 . 68–74 . January 2008 . 18164485 . 5084128 . 10.1016/j.nurt.2007.10.069 .
- Ubbink DT, Vermeulen H . Spinal cord stimulation for critical leg ischemia: a review of effectiveness and optimal patient selection . Journal of Pain and Symptom Management . 31 . 4 Suppl . S30-5 . April 2006 . 16647594 . 10.1016/j.jpainsymman.2005.12.013 . free .
- Ubbink DT, Vermeulen H . Spinal cord stimulation for non-reconstructable chronic critical leg ischaemia . The Cochrane Database of Systematic Reviews . 2 . 2 . CD004001 . February 2013 . 23450547 . 10.1002/14651858.CD004001.pub3 . 7163280 . .
- Yampolsky C, Hem S, Bendersky D . Dorsal column stimulator applications . Surgical Neurology International . 3 . Suppl 4 . S275-89 . 2012 . 23230533 . 3514915 . 10.4103/2152-7806.103019 . free .
- Yelnik AP, Simon O, Parratte B, Gracies JM . How to clinically assess and treat muscle overactivity in spastic paresis . Journal of Rehabilitation Medicine . 42 . 9 . 801–7 . October 2010 . 20878038 . 10.2340/16501977-0613 . free .
- Zafonte R, Lombard L, Elovic E . Antispasticity medications: uses and limitations of enteral therapy . American Journal of Physical Medicine & Rehabilitation . 83 . 10 Suppl . S50-8 . October 2004 . 15448578 . 10.1097/01.phm.0000141132.48673.fa . 2432783 .
External links
Notes and References
- Web site: International Neuromodulation Society home page . . 1 October 2013.
- Karas PJ, Mikell CB, Christian E, Liker MA, Sheth SA . Deep brain stimulation: a mechanistic and clinical update . Neurosurgical Focus . 35 . 5 . E1 . November 2013 . 24175861 . 10.3171/2013.9.focus13383 . 26756883 . free .
- Al-Otaibi FA, Hamani C, Lozano AM . Neuromodulation in epilepsy . Neurosurgery . 69 . 4 . 957–79; discussion 979 . October 2011 . 21716154 . 10.1227/NEU.0b013e31822b30cd . 23473956 .
- Krames, Elliot S.; Peckham, P. Hunter; Rezai, Ali R., eds. (2009). Neuromodulation, Vol. 1-2. Academic Press. p. 274. .
- Wu C, Sharan AD . Neurostimulation for the treatment of epilepsy: a review of current surgical interventions . Neuromodulation . 16 . 1 . 10–24; discussion 24 . 2013 . 22947069 . 10.1111/j.1525-1403.2012.00501.x . 1711587 .
- Web site: Boston Scientific Corporation . Precision™ Plus Spinal Cord Stimulator System Receives CE Mark Approval as MRI Conditional . Paris, France . August 28, 2012 . September 27, 2013 .
- Web site: Medtronic, Inc. . Medtronic Introduces the First and Only Neurostimulation Systems for Chronic Pain Designed for Full-Body MRI Safety . https://web.archive.org/web/20190417191203/http://phx.corporate-ir.net/phoenix.zhtml?c=76126&p=irol-newsArticle&id=1845045 . 2019-04-17 . Minneapolis, MN . August 6, 2013 . September 27, 2013 .
- Kortekaas R, van Nierop LE, Baas VG, Konopka KH, Harbers M, van der Hoeven JH, van Wijhe M, Aleman A, Maurits NM . 6 . A novel magnetic stimulator increases experimental pain tolerance in healthy volunteers - a double-blind sham-controlled crossover study . PLOS ONE . 8 . 4 . e61926 . 2013 . 23620795 . 3631254 . 10.1371/journal.pone.0061926 . 2013PLoSO...861926K . free .
- Shupak NM, Prato FS, Thomas AW . Human exposure to a specific pulsed magnetic field: effects on thermal sensory and pain thresholds . Neuroscience Letters . 363 . 2 . 157–62 . June 2004 . 15172106 . 10.1016/j.neulet.2004.03.069 . 41394936 .
- Matsumura Y, Hirayama T, Yamamoto T . Comparison between pharmacologic evaluation and repetitive transcranial magnetic stimulation-induced analgesia in poststroke pain patients . Neuromodulation . 16 . 4 . 349–54; discussion 354 . 2013 . 23311356 . 10.1111/ner.12019 . 206204986 .
- Feng WW, Bowden MG, Kautz S . Review of transcranial direct current stimulation in poststroke recovery . Topics in Stroke Rehabilitation . 20 . 1 . 68–77 . 2013 . 23340073 . 10.1310/tsr2001-68 . 39688758 .
- Krames, Elliot S.; Peckham, P. Hunter; Rezai, Ali R., eds. (2009). Neuromodulation, Vol. 1-2. Academic Press. pp. 1–1200. .
- Sun FT, Morrell MJ, Wharen RE . Responsive cortical stimulation for the treatment of epilepsy . Neurotherapeutics . 5 . 1 . 68–74 . January 2008 . 18164485 . 5084128 . 10.1016/j.nurt.2007.10.069 .
- Deer TR, Krames E, Mekhail N, Pope J, Leong M, Stanton-Hicks M, Golovac S, Kapural L, Alo K, Anderson J, Foreman RD, Caraway D, Narouze S, Linderoth B, Buvanendran A, Feler C, Poree L, Lynch P, McJunkin T, Swing T, Staats P, Liem L, Williams K . 6 . The appropriate use of neurostimulation: new and evolving neurostimulation therapies and applicable treatment for chronic pain and selected disease states. Neuromodulation Appropriateness Consensus Committee . Neuromodulation . 17 . 6 . 599–615; discussion 615 . August 2014 . 25112892 . 10.1111/ner.12204 . 20959524 .
- Mekhail NA, Cheng J, Narouze S, Kapural L, Mekhail MN, Deer T . Clinical applications of neurostimulation: forty years later . Pain Practice . 10 . 2 . 103–12 . 2010 . 20070547 . 10.1111/j.1533-2500.2009.00341.x . 24008740 .
- Web site: Bailey . Madeleine . A remote control turns off my spine . London, UK . The Express . May 14, 2013 .
- Deer TR, Mekhail N, Provenzano D, Pope J, Krames E, Leong M, Levy RM, Abejon D, Buchser E, Burton A, Buvanendran A, Candido K, Caraway D, Cousins M, DeJongste M, Diwan S, Eldabe S, Gatzinsky K, Foreman RD, Hayek S, Kim P, Kinfe T, Kloth D, Kumar K, Rizvi S, Lad SP, Liem L, Linderoth B, Mackey S, McDowell G, McRoberts P, Poree L, Prager J, Raso L, Rauck R, Russo M, Simpson B, Slavin K, Staats P, Stanton-Hicks M, Verrills P, Wellington J, Williams K, North R . 6 . The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the Neuromodulation Appropriateness Consensus Committee . Neuromodulation . 17 . 6 . 515–50; discussion 550 . August 2014 . 25112889 . 10.1111/ner.12208 . 16831609 .
- Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, Horak FB, Okun MS, Foote KD, Krack P, Pahwa R, Henderson JM, Hariz MI, Bakay RA, Rezai A, Marks WJ, Moro E, Vitek JL, Weaver FM, Gross RE, DeLong MR . 6 . Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues . Archives of Neurology . 68 . 2 . 165 . February 2011 . 20937936 . 4523130 . 10.1001/archneurol.2010.260 .
- . Medtronic Receives European CE Mark Approval for Deep Brain Stimulation Therapy for Refractory Epilepsy Further Clinical Study Required for Application to U.S. Food and Drug Administration . 16 September 2010 . 2014-10-12 . https://web.archive.org/web/20190417191205/http://newsroom.medtronic.com/phoenix.zhtml?c=251324&p=irol-newsArticle&ID=1773303&highlight= . 17 April 2019 . dead .
- News: Wilner . Andrew . vanc . 22 April 2010 . Thalamic Stimulation: New Approach to Treatment of Epilepsy . Medscape Neurology . Oct 13, 2014.
- Lozano AM, Lipsman N . Probing and regulating dysfunctional circuits using deep brain stimulation . Neuron . 77 . 3 . 406–24 . February 2013 . 23395370 . 10.1016/j.neuron.2013.01.020 . free .
- Williams NR, Okun MS . Deep brain stimulation (DBS) at the interface of neurology and psychiatry . The Journal of Clinical Investigation . 123 . 11 . 4546–56 . November 2013 . 24177464 . 3809784 . 10.1172/JCI68341 .
- George MS, Nahas Z, Borckardt JJ, Anderson B, Burns C, Kose S, Short EB . Vagus nerve stimulation for the treatment of depression and other neuropsychiatric disorders . Expert Review of Neurotherapeutics . 7 . 1 . 63–74 . January 2007 . 17187498 . 10.1586/14737175.7.1.63 . 35340441 .
- Web site: Premarket Approval (PMA) Inspire II Upper Airway Stimulation System . U.S. Food and Drug Administration . April 30, 2014 .
- Whissell PD, Persinger MA . Emerging synergisms between drugs and physiologically-patterned weak magnetic fields: implications for neuropharmacology and the human population in the twenty-first century . Current Neuropharmacology . 5 . 4 . 278–88 . December 2007 . 19305744 . 2644491 . 10.2174/157015907782793603 .
- Benussi A, Pascual-Leone A, Borroni B (2020). "Non-Invasive Cerebellar Stimulation in Neurodegenerative Ataxia: A Literature Review". International Journal of Molecular Sciences. 21 (6): 1948. doi:10.3390/ijms21061948
- Rosa, MA; Lisanby, SH (2012). "Somatic treatments for mood disorders". Neuropsychopharmacology. 37 (1): 102–116. doi:10.1038/npp.2011.225
- Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. (2014). "Non-invasive cerebellar stimulation--a consensus paper" (PDF). Cerebellum. 13 (1): 121–138. doi:10.1007/s12311-013-0514-7
- Siebner HR, Hartwigsen G, Kassuba T, Rothwell JC (2009). "How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition". Cortex; A Journal Devoted to the Study of the Nervous System and Behavior. 45 (9): 1035–1042. doi:10.1016/j.cortex.2009.02.007
- Sparing R, Mottaghy FM (2008). "Noninvasive brain stimulation with transcranial magnetic or direct current stimulation (TMS/tDCS)-From insights into human memory to therapy of its dysfunction". Methods. 44 (4): 329–337. doi:10.1016/j.ymeth.2007.02.001
- Kirsch, D. L., & Nichols, F. (2013). Cranial electrotherapy stimulation for treatment of anxiety, depression, and insomnia. Psychiatric Clinics, 36(1), 169-176.
- Hariz MI, Blomstedt P, Zrinzo L . Deep brain stimulation between 1947 and 1987: the untold story . Neurosurgical Focus . 29 . 2 . E1 . August 2010 . 20672911 . 10.3171/2010.4.FOCUS10106 . 28313693 . free .
- Book: Wall PD, Melzack R . The challenge of pain . 2nd . Penguin Books . New York . 1996 . 61–69 . 0-14-025670-9 .
- Book: Textbook of Stereotactic and Functional Neurosurgery . 1 . Lozano AM, Gildenberg PL, Tasker RR . 2009 . 16–20 .
- Bittar RG, Kar-Purkayastha I, Owen SL, Bear RE, Green A, Wang S, Aziz TZ . Deep brain stimulation for pain relief: a meta-analysis . Journal of Clinical Neuroscience . 12 . 5 . 515–9 . June 2005 . 15993077 . 10.1016/j.jocn.2004.10.005 . 24246117 .
- Book: Benabid AL, Chabardes S, Torres N, Piallat B, Krack P, Fraix V, Pollak P . Neurotherapy: Progress in Restorative Neuroscience and Neurology . Functional neurosurgery for movement disorders: a historical perspective . 175 . 379–91 . 2009 . 19660668 . 10.1016/S0079-6123(09)17525-8 . 9780123745118 . Progress in Brain Research .
- News: Cookson . Clive . vanc . 31 July 2012 . Healthcare: Into the cortex Scientific advances on the brain promise to transform the pharmaceutical industry . Financial Times . London . 11 October 2014.
- Famm K, Litt B, Tracey KJ, Boyden ES, Slaoui M . Drug discovery: a jump-start for electroceuticals . Nature . 496 . 7444 . 159–61 . April 2013 . 23579662 . 4179459 . 10.1038/496159a . 2013Natur.496..159F .
- News: John . Carroll . vanc . GlaxoSmithKline stakes a pioneering effort to launch 'electroceutical' R&D . Fierce Biotech . 10 April 2013 . 11 October 2014.
- Birmingham K, Gradinaru V, Anikeeva P, Grill WM, Pikov V, McLaughlin B, Pasricha P, Weber D, Ludwig K, Famm K . 6 . Bioelectronic medicines: a research roadmap . Nature Reviews. Drug Discovery . 13 . 6 . 399–400 . June 2014 . 24875080 . 10.1038/nrd4351 . 20061363 . 30 May 2014 .