In geometry, a nephroid is a specific plane curve. It is a type of epicycloid in which the smaller circle's radius differs from the larger one by a factor of one-half.
Although the term nephroid was used to describe other curves, it was applied to the curve in this article by Richard A. Proctor in 1878.[1]
A nephroid is
If the small circle has radius
a
(0,0)
2a
2\varphi
(2a,0)
x(\varphi)=3a\cos\varphi-a\cos3\varphi=6a\cos\varphi-4a\cos3\varphi ,
y(\varphi)=3a\sin\varphi-a\sin3\varphi=4a\sin3\varphi , 0\le\varphi<2\pi
The complex map
z\toz3+3z
The proof of the parametric representation is easily done by using complex numbers and their representation as complex plane. The movement of the small circle can be split into two rotations. In the complex plane a rotation of a point
z
0
\varphi
z
ei\varphi
rotation
\Phi3
3a
2\varphi
:z\mapsto3a+(z-3a)ei2\varphi
rotation
\Phi0
0
\varphi
: z\mapstozei\varphi
A point
p(\varphi)
2a
\Phi3
\Phi0
p(\varphi)=\Phi0(\Phi3(2a))=\Phi
i2\varphi | |
0(3a-ae |
)=(3a-aei2\varphi)ei\varphi=3aei\varphi-aei3\varphi
\begin{array}{cclcccc} x(\varphi)&=&3a\cos\varphi-a\cos3\varphi&=&6a\cos\varphi-4a\cos3\varphi ,&&\\ y(\varphi)&=&3a\sin\varphi-a\sin3\varphi&=&4a\sin3\varphi&.& \end{array}
ei\varphi=\cos\varphi+i\sin\varphi, \cos2\varphi+\sin2\varphi=1, \cos3\varphi=4\cos3\varphi-3\cos\varphi, \sin3\varphi=3\sin\varphi-4\sin3\varphi
Inserting
x(\varphi)
y(\varphi)
(x2+y2-4a2)3=108a4y2
With
x2+y2-4a2=(3a\cos\varphi-a\cos3\varphi)2+(3a\sin\varphi-a\sin3\varphi)2-4a2= … =6a2(1-\cos2\varphi)=12a2\sin2\varphi
(x2+y2-4a2)3=(12a2)3\sin6\varphi=108a4(4a\sin3\varphi)2=108a4y2 .
If the cusps are on the y-axis the parametric representation is
x=3a\cos\varphi+a\cos3\varphi, y=3a\sin\varphi+a\sin3\varphi).
(x2+y2-4a2)3=108a4x2.
For the nephroid above the
L=24a,
A=12\pia2
\rho=|3a\sin\varphi|.
x(\varphi)=6a\cos\varphi-4a\cos3\varphi ,
y(\varphi)=4a\sin3\varphi
x=-6a\sin\varphi(1 |
-2\cos2\varphi) , \ddotx=-6a\cos\varphi(5-6\cos2\varphi) ,
y=12a\sin |
2\varphi\cos\varphi , \ddoty=12a\sin\varphi(3\cos2\varphi-1) .
| |||
L=2\int | |||
0 |
| |||
2}} d\varphi= …
\pi | |
=12a\int | |
0 |
\sin\varphi d\varphi=24a
A=2 ⋅
\pi[x | |
\tfrac{1}{2}|\int | |
0 |
y-y |
x] |
d\varphi|= … =
\pi\sin | |
24a | |
0 |
2\varphi d\varphi=12\pia2
\rho=\left|
| |||||||
\right) |
| ||||||
-
y |
\ddot{x}}\right|= … =|3a\sin\varphi|.
a
2a
c0
D1,D2
d12
c0
d12
D1,D2
Let
c0
(2a\cos\varphi,2a\sin\varphi)
(0,0)
2a
f(x,y,\varphi)=(x-2a\cos\varphi)2+(y-2a\sin\varphi)2-(2a\sin\varphi)2=0 .
f\varphi(x,y,\varphi)=2a(x\sin\varphi-y\cos\varphi-2a\cos\varphi\sin\varphi)=0 .
p(\varphi)=(6a\cos\varphi-4a\cos3\varphi , 4a\sin3\varphi)
f(x,y,\varphi)=0, f\varphi(x,y,\varphi)=0
Similar to the generation of a cardioid as envelope of a pencil of lines the following procedure holds:
3N
(1,3),(2,6),....,(n,3n),....,(N,3N),(N+1,3),(N+2,6),....,
The following consideration uses trigonometric formulae for
\cos\alpha+\cos\beta, \sin\alpha+\sin\beta, \cos(\alpha+\beta), \cos2\alpha
x=3\cos\varphi+\cos3\varphi, y=3\sin\varphi+\sin3\varphi
Herefrom one determines the normal vector
\vecn=(
y |
,-
x) |
T
y(\varphi) ⋅ |
(x-x(\varphi))-
x(\varphi) ⋅ |
(y-y(\varphi))=0
(\cos2\varphi ⋅ x + \sin2\varphi ⋅ y)\cos\varphi=4\cos2\varphi .
\varphi=\tfrac{\pi}{2},\tfrac{3\pi}{2}
\varphi\ne\tfrac{\pi}{2},\tfrac{3\pi}{2}
\cos\varphi
\cos2\varphi ⋅ x+\sin2\varphi ⋅ y=4\cos\varphi .
Equation of the chord: to the circle with midpoint
(0,0)
4
(4\cos\theta,4\sin\theta), (4\cos{\color{red}3}\theta,4\sin{\color{red}3}\theta))
(\cos2\theta ⋅ x+\sin2\theta ⋅ y)\sin\theta=4\cos\theta\sin\theta .
\theta=0,\pi
\theta\ne0,\pi
\sin\theta
\cos2\theta ⋅ x+\sin2\theta ⋅ y=4\cos\theta .
\varphi,\theta
\varphi
\theta
\varphi=\theta
The considerations made in the previous section give a proof for the fact, that the caustic of one half of a circle is a nephroid.
The circle may have the origin as midpoint (as in the previous section) and its radius is
4
k(\varphi)=4(\cos\varphi,\sin\varphi) .
K: k(\varphi)
\vec
T | |
n | |
t=(\cos\varphi,\sin\varphi) |
\vec
T | |
n | |
r=(\cos{\color{red}2}\varphi,\sin{\color{red}2}\varphi) |
K: 4(\cos\varphi,\sin\varphi)
\cos{\color{red}2}\varphi ⋅ x + \sin{\color{red}2}\varphi ⋅ y=4\cos\varphi ,
P: (3\cos\varphi+\cos3\varphi,3\sin\varphi+\sin3\varphi)
The evolute of a curve is the locus of centers of curvature. In detail: For a curve
\vecx=\vecc(s)
\rho(s)
\vecx=\vecc(s)+\rho(s)\vecn(s).
\vecn(s)
For a nephroid one gets:
The nephroid as shown in the picture has the parametric representation
x=3\cos\varphi+\cos3\varphi, y=3\sin\varphi+\sin3\varphi ,
\vecn(\varphi)=(-\cos2\varphi,-\sin2\varphi)T
3\cos\varphi
x=3\cos\varphi+\cos3\varphi-3\cos\varphi ⋅ \cos2\varphi= … =3\cos\varphi-2\cos3\varphi,
y=3\sin\varphi+\sin3\varphi-3\cos\varphi ⋅ \sin2\varphi = … =2\sin3\varphi ,
Because the evolute of a nephroid is another nephroid, the involute of the nephroid is also another nephroid. The original nephroid in the image is the involute of the smaller nephroid.
x\mapsto
4a2x | |
x2+y2 |
, y\mapsto
4a2y | |
x2+y2 |
(0,0)
2a
(x2+y2-4a2)3=108a4y2
(4a2-(x2+y2))3=27a2(x2+y2)y2