Near-horizon metric explained
The near-horizon metric (NHM) refers to the near-horizon limit of the global metric of a black hole. NHMs play an important role in studying the geometry and topology of black holes, but are only well defined for extremal black holes.[1] [2] [3] NHMs are expressed in Gaussian null coordinates, and one important property is that the dependence on the coordinate
is fixed in the near-horizon limit.
NHM of extremal Reissner–Nordström black holes
The metric of extremal Reissner–Nordström black hole is
)2dt
)-2dr2+r2(d\theta2+\sin2\thetad\phi2).
Taking the near-horizon limit
}\,,\quad r\mapsto M+\epsilon\,\tilde\,,\quad \epsilon\to 0\,,
and then omitting the tildes, one obtains the near-horizon metric
dr2+M2(d\theta2+\sin2\thetad\phi2)
NHM of extremal Kerr black holes
The metric of extremal Kerr black hole (
) in
Boyer–Lindquist coordinates can be written in the following two enlightening forms,
[4] [5]
(dt-M\sin2\thetad\phi
(Mdt-(r2+M2)d\phi)2,
where
2+M2\cos2\theta,
\Sigma2:=(r2+M2)2-M
.
Taking the near-horizon limit[6] [7]
}\,,\quad r\mapsto M+\epsilon\,\tilde\,,\quad \phi\mapsto \tilde+\frac\tilde\,,\quad \epsilon\to 0\,,
and omitting the tildes, one obtains the near-horizon metric (this is also called extremal Kerr throat)
ds2\simeq
dr2+2M2d\theta2)+
| 4M2\sin2\theta |
1+\cos2\theta |
(d\phi+
)2.
NHM of extremal Kerr–Newman black holes
Extremal Kerr–Newman black holes (
) are described by the metric
| 2- | 2a\sin2\theta(2Mr-Q2) | \rhoKN |
|
)dt | |
dtd\phi
+\rhoKN(
+
d\phi2,
where
\DeltaKN:=r2-2Mr+a2+Q2, \rhoKN:=r2+a2\cos2\theta, \Sigma2:=(r2+a2)
a2\sin2\theta.
Taking the near-horizon transformation
}\,,\quad r\mapsto M+\epsilon\,\tilde\,,\quad \phi\mapsto \tilde+\frac\tilde\,,\quad \epsilon\to 0\,,\quad \Big(r^2_0\,:=\,M^2+a^2\Big)
and omitting the tildes, one obtains the NHM
ds2\simeq(1-
\sin2\theta)\left(-
dr2+r
\sin2\theta)-1\left(d\phi+
dt\right)2.
NHMs of generic black holes
In addition to the NHMs of extremal Kerr–Newman family metrics discussed above, all stationary NHMs could be written in the form[8]
GAGB-F)r2dv2+2dvdr-\hat{h}ABGBrdvdyA-\hat{h}ABGArdv
dyAdyB
=-Fr2
(dyA-GArdv)(dyB-GBrdv),
where the metric functions
are independent of the coordinate r,
denotes the
intrinsic metric of the horizon, and
are
isothermal coordinates on the horizon.
Remark: In Gaussian null coordinates, the black hole horizon corresponds to
.
See also
Notes and References
- Kunduri . Hari K. . Lucietti . James . A classification of near-horizon geometries of extremal vacuum black holes . Journal of Mathematical Physics . 50 . 8 . 2009 . 0022-2488 . 10.1063/1.3190480 . 082502. 0806.2051. 2009JMP....50h2502K . 15173886 .
- Kunduri . Hari K . Lucietti . James . Static near-horizon geometries in five dimensions . Classical and Quantum Gravity . IOP Publishing . 26 . 24 . 2009-11-25 . 0264-9381 . 10.1088/0264-9381/26/24/245010 . 245010. 0907.0410. 2009CQGra..26x5010K . 55272059 .
- Kunduri . Hari K . Electrovacuum near-horizon geometries in four and five dimensions . Classical and Quantum Gravity . 28 . 11 . 2011-05-20 . 0264-9381 . 10.1088/0264-9381/28/11/114010 . 114010. 1104.5072. 2011CQGra..28k4010K . 118609264 .
- Book: Hobson . Michael Paul . George . Efstathiou. Anthony N . Lasenby.. General relativity : an introduction for physicists . Cambridge University Press . Cambridge, UK New York . 2006 . 978-0-521-82951-9 . 61757089 .
- Book: Frolov . Valeri P. Igor D . Novikov . Black hole physics : basic concepts and new developments . Kluwer . Dordrecht Boston . 1998 . 978-0-7923-5145-0 . 39189783 .
- Bardeen . James . Horowitz . Gary T. . Extreme Kerr throat geometry: A vacuum analog of AdS2×S2 . Physical Review D . 60 . 10 . 1999-10-26 . 0556-2821 . 10.1103/physrevd.60.104030 . 104030. hep-th/9905099. 1999PhRvD..60j4030B . 17389870 .
- Amsel . Aaron J. . Horowitz . Gary T. . Marolf . Donald . Roberts . Matthew M. . Uniqueness of extremal Kerr and Kerr-Newman black holes . Physical Review D . 81 . 2 . 2010-01-22 . 1550-7998 . 10.1103/physrevd.81.024033 . 024033. 0906.2367. 2010PhRvD..81b4033A . 15540019 .
- Compère . Geoffrey . The Kerr/CFT Correspondence and its Extensions . Living Reviews in Relativity . Springer Science and Business Media LLC . 15 . 1 . 2012-10-22 . 2367-3613 . 10.12942/lrr-2012-11 . 11. 28179839 . 5255558 . free. 1203.3561. 2012LRR....15...11C .