Near-horizon metric explained

The near-horizon metric (NHM) refers to the near-horizon limit of the global metric of a black hole. NHMs play an important role in studying the geometry and topology of black holes, but are only well defined for extremal black holes.[1] [2] [3] NHMs are expressed in Gaussian null coordinates, and one important property is that the dependence on the coordinate

r

is fixed in the near-horizon limit.

NHM of extremal Reissner–Nordström black holes

The metric of extremal Reissner–Nordström black hole is

2=-(1-M
r
ds

)2dt

2+(1-M
r

)-2dr2+r2(d\theta2+\sin2\thetad\phi2).

Taking the near-horizon limit

t\mapsto

\tilde{t
}\,,\quad r\mapsto M+\epsilon\,\tilde\,,\quad \epsilon\to 0\,,

and then omitting the tildes, one obtains the near-horizon metric

2=-r2
M2
ds
2+M2
r2
dt

dr2+M2(d\theta2+\sin2\thetad\phi2)

NHM of extremal Kerr black holes

The metric of extremal Kerr black hole (

M=a=J/M

) in Boyer–Lindquist coordinates can be written in the following two enlightening forms,[4] [5]
2=-
2\Delta
\rho
K
\Sigma2
ds
2+
2
\rho
K
\DeltaK
dt
2d\theta
dr
K
2+\Sigma2\sin2\theta
2
\rho
K

(d\phi-\omegaKdt)2,

2=-\DeltaK
2
\rho
K
ds

(dt-M\sin2\thetad\phi

2+
2
\rho
K
\DeltaK
)
2
dr
K
2+\sin2\theta
2
\rho
K
d\theta

(Mdt-(r2+M2)d\phi)2,

where

2:=r
\rho
K

2+M2\cos2\theta,  

2,  
\Delta
K:=(r-M)

\Sigma2:=(r2+M2)2-M

2\theta,  
K\sin
\omega
K:=2M2r
\Sigma2

.

Taking the near-horizon limit[6] [7]

t\mapsto

\tilde{t
}\,,\quad r\mapsto M+\epsilon\,\tilde\,,\quad \phi\mapsto \tilde+\frac\tilde\,,\quad \epsilon\to 0\,,

and omitting the tildes, one obtains the near-horizon metric (this is also called extremal Kerr throat)

ds2\simeq

1+\cos2\theta(-
2
r2
2M2
2+2M2
r2
dt

dr2+2M2d\theta2)+

4M2\sin2\theta
1+\cos2\theta

(d\phi+

rdt
2M2

)2.

NHM of extremal Kerr–Newman black holes

Extremal Kerr–Newman black holes (

2=M
r
+

2+Q2

) are described by the metric
2=-(1-2Mr-Q2
\rhoKN
ds
2-2a\sin2\theta(2Mr-Q2)
\rhoKN
)dt

dtd\phi +\rhoKN(

dr2
\DeltaKN

+

2)+\Sigma2
\rhoKN
d\theta

d\phi2,

where

\DeltaKN:=r2-2Mr+a2+Q2,  \rhoKN:=r2+a2\cos2\theta,  \Sigma2:=(r2+a2)

2-\Delta
KN

a2\sin2\theta.

Taking the near-horizon transformation

t\mapsto

\tilde{t
}\,,\quad r\mapsto M+\epsilon\,\tilde\,,\quad \phi\mapsto \tilde+\frac\tilde\,,\quad \epsilon\to 0\,,\quad \Big(r^2_0\,:=\,M^2+a^2\Big)

and omitting the tildes, one obtains the NHM

ds2\simeq(1-

a2
2
r
0

\sin2\theta)\left(-

r2
2
r
0
2+
2
r
0
r2
dt

dr2+r

2
0d\theta
2\theta(1-a2
2
r
0
\right)+r
0\sin

\sin2\theta)-1\left(d\phi+

2arM
4
r
0

dt\right)2.

NHMs of generic black holes

In addition to the NHMs of extremal Kerr–Newman family metrics discussed above, all stationary NHMs could be written in the form[8]

2=(\hat{h}
ds
AB

GAGB-F)r2dv2+2dvdr-\hat{h}ABGBrdvdyA-\hat{h}ABGArdv

B+\hat{h}
dy
AB

dyAdyB


=-Fr2

2+2dvdr+\hat{h}
dv
AB

(dyA-GArdv)(dyB-GBrdv),

where the metric functions

\{F,GA\}

are independent of the coordinate r,

\hat{h}AB

denotes the intrinsic metric of the horizon, and

yA

are isothermal coordinates on the horizon.

Remark: In Gaussian null coordinates, the black hole horizon corresponds to

r=0

.

See also

Notes and References

  1. Kunduri . Hari K. . Lucietti . James . A classification of near-horizon geometries of extremal vacuum black holes . Journal of Mathematical Physics . 50 . 8 . 2009 . 0022-2488 . 10.1063/1.3190480 . 082502. 0806.2051. 2009JMP....50h2502K . 15173886 .
  2. Kunduri . Hari K . Lucietti . James . Static near-horizon geometries in five dimensions . Classical and Quantum Gravity . IOP Publishing . 26 . 24 . 2009-11-25 . 0264-9381 . 10.1088/0264-9381/26/24/245010 . 245010. 0907.0410. 2009CQGra..26x5010K . 55272059 .
  3. Kunduri . Hari K . Electrovacuum near-horizon geometries in four and five dimensions . Classical and Quantum Gravity . 28 . 11 . 2011-05-20 . 0264-9381 . 10.1088/0264-9381/28/11/114010 . 114010. 1104.5072. 2011CQGra..28k4010K . 118609264 .
  4. Book: Hobson . Michael Paul . George . Efstathiou. Anthony N . Lasenby.. General relativity : an introduction for physicists . Cambridge University Press . Cambridge, UK New York . 2006 . 978-0-521-82951-9 . 61757089 .
  5. Book: Frolov . Valeri P. Igor D . Novikov . Black hole physics : basic concepts and new developments . Kluwer . Dordrecht Boston . 1998 . 978-0-7923-5145-0 . 39189783 .
  6. Bardeen . James . Horowitz . Gary T. . Extreme Kerr throat geometry: A vacuum analog of AdS2×S2 . Physical Review D . 60 . 10 . 1999-10-26 . 0556-2821 . 10.1103/physrevd.60.104030 . 104030. hep-th/9905099. 1999PhRvD..60j4030B . 17389870 .
  7. Amsel . Aaron J. . Horowitz . Gary T. . Marolf . Donald . Roberts . Matthew M. . Uniqueness of extremal Kerr and Kerr-Newman black holes . Physical Review D . 81 . 2 . 2010-01-22 . 1550-7998 . 10.1103/physrevd.81.024033 . 024033. 0906.2367. 2010PhRvD..81b4033A . 15540019 .
  8. Compère . Geoffrey . The Kerr/CFT Correspondence and its Extensions . Living Reviews in Relativity . Springer Science and Business Media LLC . 15 . 1 . 2012-10-22 . 2367-3613 . 10.12942/lrr-2012-11 . 11. 28179839 . 5255558 . free. 1203.3561. 2012LRR....15...11C .