In algebraic number theory, the narrow class group of a number field K is a refinement of the class group of K that takes into account some information about embeddings of K into the field of real numbers.
Suppose that K is a finite extension of Q. Recall that the ordinary class group of K is defined as the quotient
CK=IK/PK,
The narrow class group is defined to be the quotient
+ | |
C | |
K |
=IK/
+, | |
P | |
K |
\sigma:K\toR.
The narrow class group features prominently in the theory of representing integers by quadratic forms. An example is the following result (Fröhlich and Taylor, Chapter V, Theorem 1.25).
Theorem. Suppose that
K=Q(\sqrt{d}),
\{\omega1,\omega2\}
is a basis for the ring of integers of K. Define a quadratic form
qK(x,y)=NK/Q(\omega1x+\omega2y)
where NK/Q is the norm. Then a prime number p is of the form
p=qK(x,y)
for some integers x and y if and only if either
p\middK,
or
p=2 and dK\equiv1\pmod8,
or
p>2 and \left(
dK | |
p\right) |
=1,
where dK is the discriminant of K, and
\left( | ab\right) |
denotes the Legendre symbol.
For example, one can prove that the quadratic fields Q, Q, Q all have trivial narrow class group. Then, by choosing appropriate bases for the integers of each of these fields, the above theorem implies the following:
p=2 or p\equiv1\pmod4.
(This is known as Fermat's theorem on sums of two squares.)
p=2 or p\equiv1,7\pmod8.
p=3 or p\equiv1\pmod3.
An example that illustrates the difference between the narrow class group and the usual class group is the case of Q. This has trivial class group, but its narrow class group has order 2. Because the class group is trivial, the following statement is true:
p=2 or p=3 or \left(
6 | |
p |
\right)=1.
However, this statement is false if we focus only on p and not −p (and is in fact even false for p = 2), because the narrow class group is nontrivial. The statement that classifies the positive p is the following:
\left( | 6 |
p |
\right)=1 and \left(
-2 | |
p |
\right)=1.
(Whereas the first statement allows primes
p\equiv1,5,19,23\pmod{24}
p\equiv1,19\pmod{24}