Nanobubble Explained

A nanobubble is a small sub-micrometer gas-containing cavity, or bubble, in aqueous solutions with unique properties caused by high internal pressure, small size and surface charge.[1] [2] Nanobubbles generally measure between 70-150 nanometers in size [3] [4] and less than 200 nanometers in diameter[5] [6] and are known for their longevity and stability, low buoyancy, negative surface charge, high surface area per volume, high internal pressure, and high gas transfer rates.[7] [8] [9]

Nanobubbles can be formed by injecting any gas into a liquid.[10] [11] Because of their unique properties, they can interact with and affect physical, chemical, and biological processes.[12] They have been used in technology applications for industries such as wastewater, environmental engineering, agriculture, aquaculture, medicine and biomedicine, and others.[13] [14]

Background

Nanobubbles are nanoscopic and generally too small to be observed using the naked eye or a standard microscope, but can be observed using backscattering of light using tools such as green laser pointers. Stable nanobubbles in bulk about 30-400 millimeters in diameter were first reported in the British scientific journal Nature in 1982. Scientists found them in deep water breaks using sonar observation.

In 1994, a study by Phil Attard, John L. Parker, and Per M. Claesson further theorized about the existence of nano-sized bubbles, proposing that stable nanobubbles can form on the surface of both hydrophilic and hydrophobic surfaces depending on factors such as the level of saturation and surface tension.[15]

Nanobubbles can be generated using techniques such as solvent exchange, electrochemical reactions, and immersing a hydrophobic substrate into water while increasing or decreasing the water’s temperature.[13]

Nanobubbles and nanoparticles are often found together in certain circumstances,[16] but they differ in that nanoparticles have different properties such as density and resonance frequency.[17] [18]

The study of nanobubbles faces challenges in understanding their stability and the mechanisms behind their formation and dissolution.[19]

Properties

Nanobubbles possess several distinctive properties:

Usage

In aquaculture, nanobubbles have been used to improve fish health and growth rates[21] [22] [23] and to enhance oxidation.[24] [25] [26] Nanobubbles can improve health outcomes for fish by increasing the dissolved oxygen concentration of water, reducing the concentration of bacteria and viruses in water,[22] and triggering the nonspecific defense system of species such as the Nile tilapia, improving survivability during bacterial infections.[27] The use of nanobubbles to increase dissolved oxygen levels can also promote plant growth and reduce the need for chemicals.[28] Nanobubbles have also been shown as effective in increasing the metabolism of living organisms including plants.[26] In regards to oxidation, nanobubbles are known for generating reactive oxygen species, giving them oxidative properties exceeding hydrogen peroxide.[25] Researchers have also proposed nanobubbles as a low-chemical alternative to chemical-based oxidants such as chlorine and ozone.[26] [27]

Notes and References

  1. Web site: Nanobubble - an overview . 2024-03-31 . sciencedirect.com.
  2. Nirmalkar . N. . Pacek . A. W. . Barigou . M. . 2018-09-18 . On the Existence and Stability of Bulk Nanobubbles . Langmuir . en . 34 . 37 . 10964–10973 . 10.1021/acs.langmuir.8b01163 . 30179016 . 0743-7463.
  3. Web site: Davey . Abby . 2022-06-27 . Moleaer: Tiny bubble tech makes a big splash . 2024-03-31 . H2O Global News . en-US.
  4. Web site: Press . Aju . 2022-10-27 . Fawoo Nanotech develops nanobubble generator to produce hydrogen in large quantities . 2024-03-31 . Aju Press.
  5. Morphological and physiological responses . cabidigitallibrary.org.
  6. Shah . Rahul . Phatak . Niraj . Choudhary . Ashok . Gadewar . Sakshi . Ajazuddin . Bhattacharya . Sankha . 2024 . Exploring the Theranostic Applications and Prospects of Nanobubbles . 2024-03-31 . Current Pharmaceutical Biotechnology . 25 . 9 . 1167–1181 . 10.2174/0113892010248189231010085827 . 37861011 . en.
  7. Lyu . Tao . Wu . Shubiao . Mortimer . Robert J. G. . Pan . Gang . 2019-07-02 . Nanobubble Technology in Environmental Engineering: Revolutionization Potential and Challenges . Environmental Science & Technology . en . 53 . 13 . 7175–7176 . 10.1021/acs.est.9b02821 . 31180652 . 2019EnST...53.7175L . 0013-936X.
  8. Azevedo . A. . Etchepare . R. . Calgaroto . S. . Rubio . J. . 2016-08-01 . Aqueous dispersions of nanobubbles: Generation, properties and features . Minerals Engineering . 94 . 29–37 . 10.1016/j.mineng.2016.05.001 . 2016MiEng..94...29A . 0892-6875.
  9. Molecular dynamics simulation of bulk nanobubbles . Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022 . 10.1016/j.colsurfa.2022.129565 . Aluthgun Hewage . Shaini . Meegoda . Jay N. . 650 . free .
  10. Web site: Wine . Gaby . Meet the Israeli scientist curing cancer with bubbles . 2024-03-31 . thejc.com . en.
  11. Web site: The Proven Benefits of Nanobubbles . May 5, 2024 . moleaer.com . en.
  12. Web site: Nanobubbles (ultrafine bubbles) . 2024-03-31 . water.lsbu.ac.uk.
  13. Foudas . Anastasios W. . Kosheleva . Ramonna I. . Favvas . Evangelos P. . Kostoglou . Margaritis . Mitropoulos . Athanasios C. . Kyzas . George Z. . 2023-01-01 . Fundamentals and applications of nanobubbles: A review . Chemical Engineering Research and Design . 189 . 64–86 . 10.1016/j.cherd.2022.11.013 . 2023CERD..189...64F . 0263-8762.
  14. Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for nile tilapia (Oreochromis niloticus) . IOP Conference Series: Earth and Environmental Science . 2018 . 10.1088/1755-1315/137/1/012046 . Mahasri . G. . Saskia . A. . Apandi . P. S. . Dewi . N. N. . Rozi . Usuman . N. M. . 137 . 1 . 012046 . 2018E&ES..137a2046M . free .
  15. Parker . John L. . Claesson . Per M. . Attard . Phil . August 1994 . Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. . The Journal of Physical Chemistry . en . 98 . 34 . 8468–8480 . 10.1021/j100085a029 . 0022-3654.
  16. Alheshibri . Muidh . Al Baroot . Abbad . Shui . Lingling . Zhang . Minmin . 2021-10-01 . Nanobubbles and nanoparticles . Current Opinion in Colloid & Interface Science . 55 . 101470 . 10.1016/j.cocis.2021.101470 . 1359-0294.
  17. Paknahad . Ali A. . Kerr . Liam . Wong . Daniel A. . Kolios . Michael C. . Tsai . Scott S. H. . Biomedical nanobubbles and opportunities for microfluidics . RSC Advances . 2021 . 11 . 52 . 32750–32774 . 10.1039/d1ra04890b . 2046-2069 . 9042222 . 35493576. 2021RSCAd..1132750P .
  18. Alheshibri . Muidh . Craig . Vincent S. J. . 2018-09-27 . Differentiating between Nanoparticles and Nanobubbles by Evaluation of the Compressibility and Density of Nanoparticles . The Journal of Physical Chemistry C . en . 122 . 38 . 21998–22007 . 10.1021/acs.jpcc.8b07174 . 1932-7447.
  19. Wu . Jiajia . Zhang . Kejia . Cen . Cheng . Wu . Xiaogang . Mao . Ruyin . Zheng . Yingying . 2021-06-28 . Role of bulk nanobubbles in removing organic pollutants in wastewater treatment . AMB Express . 11 . 1 . 96 . 10.1186/s13568-021-01254-0 . free . 2191-0855 . 8239109 . 34184137.
  20. Nazari . Sabereh . Hassanzadeh . Ahmad . He . Yaqun . Khoshdast . Hamid . Kowalczuk . Przemyslaw B. . April 2022 . Recent Developments in Generation, Detection and Application of Nanobubbles in Flotation . Minerals . en . 12 . 4 . 462 . 10.3390/min12040462 . free . 2022Mine...12..462N . 2075-163X. 11250/3048662 . free .
  21. Ebina . Kosuke . Shi . Kenrin . Hirao . Makoto . Hashimoto . Jun . Kawato . Yoshitaka . Kaneshiro . Shoichi . Morimoto . Tokimitsu . Koizumi . Kota . Yoshikawa . Hideki . 2013-06-05 . Oxygen and Air Nanobubble Water Solution Promote the Growth of Plants, Fishes, and Mice . PLOS ONE . en . 8 . 6 . e65339 . 10.1371/journal.pone.0065339 . free . 1932-6203 . 3673973 . 23755221. 2013PLoSO...865339E .
  22. Dien . Le Thanh . Linh . Nguyen Vu . Mai . Thao Thu . Senapin . Saengchan . St-Hilaire . Sophie . Rodkhum . Channarong . Dong . Ha Thanh . 2022-03-30 . Impacts of oxygen and ozone nanobubbles on bacteriophage in aquaculture system . Aquaculture . 551 . 737894 . 10.1016/j.aquaculture.2022.737894 . 2022Aquac.55137894D . 0044-8486.
  23. Ramos . Royer Pizarro . Yupanqui . Walter Wilfredo Ochoa . Tineo-Vargas . Viky Soledad . Tello-Ataucusi . Dina Soledad . Pariona-Garay . Lino David . Ochoa-Rodríguez . Diego Wilfredo . Castro-Carranza . Tomás Segundo . Tenorio-Bautista . Saturnino Martín . 2022-03-15 . Efecto de la oxigenación con micronanoburbujas en la calidad de agua y producción de "truchas" Oncorhynchus mykiss . Llamkasun . es . 3 . 1 . 66–73 . 10.47797/llamkasun.v3i1.84 . 2709-2275. free .
  24. Atkinson . Ariel J. . Apul . Onur G. . Schneider . Orren . Garcia-Segura . Sergi . Westerhoff . Paul . 2019-05-21 . Nanobubble Technologies Offer Opportunities To Improve Water Treatment . Accounts of Chemical Research . en . 52 . 5 . 1196–1205 . 10.1021/acs.accounts.8b00606 . 30958672 . 0001-4842.
  25. Liu . Shu . Oshita . S. . Makino . Y. . Micro . th . 2014 . Reactive oxygen species induced by water containing nano-bubbles and its role in the improvement of barley seed germination . 55453522 .
  26. Liu . Shu . Oshita . Seiichi . Makino . Yoshio . Wang . Qunhui . Kawagoe . Yoshinori . Uchida . Tsutomu . 2016-03-07 . Oxidative Capacity of Nanobubbles and Its Effect on Seed Germination . ACS Sustainable Chemistry & Engineering . en . 4 . 3 . 1347–1353 . 10.1021/acssuschemeng.5b01368 . 2168-0485.
  27. Linh . Nguyen Vu . Dien . Le Thanh . Panphut . Wattana . Thapinta . Anat . Senapin . Saengchan . St-Hilaire . Sophie . Rodkhum . Channarong . Dong . Ha Thanh . 2021-05-01 . Ozone nanobubble modulates the innate defense system of Nile tilapia (Oreochromis niloticus) against Streptococcus agalactiae . Fish & Shellfish Immunology . 112 . 64–73 . 10.1016/j.fsi.2021.02.015 . 33667674 . 2021FSI...112...64L . 1050-4648.
  28. Web site: Nanobubble systems Applications in Horticulture & Hydroponics . 2024-03-31 . Nanobubbles . en.