N-topological space explained

In mathematics, an N-topological space is a set equipped with N arbitrary topologies. If τ1τ2, ..., τN are N topologies defined on a nonempty set X, then the N-topological space is denoted by (X,τ1,τ2,...,τN).For N = 1, the structure is simply a topological space.For N = 2, the structure becomes a bitopological space introduced by J. C. Kelly.[1]

Example

Let X =  be any finite set. Suppose Ar = . Then the collection τ1 =  will be a topology on X. If τ1, τ2, ..., τm be m such topologies (chain topologies) defined on X, then the structure (X, τ1, τ2, ..., τm) is an m-topological space.

Notes and References

  1. Kelly. J. C.. Bitopological spaces. Proc. London Math. Soc.. 1963. 13. 3. 71–89. 10.1112/plms/s3-13.1.71.