Myosin binding protein C, cardiac explained
The myosin-binding protein C, cardiac-type is a protein that in humans is encoded by the MYBPC3 gene.[1] This isoform is expressed exclusively in heart muscle during human and mouse development,[2] and is distinct from those expressed in slow skeletal muscle (MYBPC1) and fast skeletal muscle (MYBPC2).
Structure
cMyBP-C is a 140.5 kDa protein composed of 1273 amino acids.[3] [4] [5] cMyBP-C is a myosin-associated protein that binds at 43 nm intervals along the myosin thick filament backbone, stretching for 200 nm on either side of the M-line within the crossbridge-bearing zone (C-region) of the A band in striated muscle.[6] The approximate stoichiometry of cMyBP-C along the thick filament is 1 per 9-10 myosin molecules, or 37 cMyBP-C molecules per thick filament.[7] In addition to myosin, cMyBP-C also binds titin and actin.[8] [9] The cMyBP-C isoform expressed in cardiac muscle differs from those expressed in slow and fast skeletal muscle (MYBPC1 and MYBPC2, respectively) by three features: (1) an additional immunoglobulin (Ig)-like domain on the N-terminus, (2) a linker region between the second and third Ig domains, and (3) an additional loop in the sixth Ig domain.[10] cMyBP-C appears necessary for normal order, filament length and lattice spacing within the structure of the sarcomere.[11] [12]
Function
cMyBP-C is not essential for sarcomere formation during embryogenesis, but is crucial for sarcomere organization and maintenance of normal cardiac function. Absence of cMyBP-C (Mybpc3-targeted knock-out mice) results in severe cardiac hypertrophy, increased heart-weight-to-body-weight-ratios, enlargement of ventricles, increased myofilament Ca2+ sensitivity and depressed diastolic and systolic function.[13] [14] [15] Histologically, Mybpc3-targeted knock-out hearts display structural rearrangements with cardiac myocyte disarray and increased interstitial fibrosis similar to patients with hypertrophic cardiomyopathy, without obvious alterations in shape or size of single cardiac myocytes. Ultrastructural examination revealed a loss of lateral alignment of adjacent myofibrils with their Z-lines misaligned.[13] [14] [16] [17]
cMyBP-C appears to act as a brake on cardiac contraction, as loaded shortening, power and cycling kinetics all increase in cMyBP-C knockout mice.[18] Consistent with this notion, cMyBP-C knockout mice exhibit an abnormal systolic timecourse, with a shortened elastance timecourse and lower peak elastance in vivo,[19] and an accelerated force development in isolated, skinned cardiac fibers[20] suggesting that cMyBP-C is required to constrain the crossbridges in order to sustain a normal ejection.
cMyBP-C regulates the positioning of myosin and actin for interaction and acts as a tether to the myosin S1 heads, limiting their mobility. This results in a decreased number of crossbridges formed, which hinders force generation, due to its N-terminal C1-M-C2 region interacting with the myosin-S2 domain.[21] [22] [23] [24] Furthermore, cMyBP-C contributes to the regulation of cardiac contraction at short sarcomere length and is required for complete relaxation in diastole.[15] [25]
Interactions of cMyBP-C with its binding partners vary with its posttranslational modification status. At least three extensively characterized phosphorylation sites (Ser273, 282 and 302; numbering refers to the mouse sequence) are localized in the M motif of cMyBP-C and are targeted by protein kinases in a hierarchical order of events. In its dephosphorylated state, cMyBP-C binds predominantly to myosin S2 and brakes crossbridge formation, however, when phosphorylated in response to β-adrenergic stimulation through activating cAMP-dependent protein kinase (PKA), it favours binding to actin, then accelerating crossbridge formation, enhancing force development and promoting relaxation.[26] Protein kinases identified thus far to phosphorylate cMyBP-C in the M motif are PKA,[27] [28] [29] [30] [31] Ca2+/calmodulin-dependent kinase II (CaMKII),[32] ribosomal s6 kinase (RSK),[33] protein kinase D (PKD),[34] [35] and protein kinase C (PKC).[30] Furthermore, GSK3β was described as another protein kinase to phosphorylate cMyBP-C outside the M-domain in the proline-alanine-rich actin-binding site at Ser133 in human myocardium (mouse Ser131).[36] Phosphorylation is required for normal cardiac function and cMyBP-C stability,[37] [38] and overall phosphorylation levels of cMyBP-C are reduced in human and experimental heart failure.[39] [40] Other posttranslational modifications of cMyBP-C exist, which occur throughout the protein and are not thoroughly characterised yet, such as acetylation,[41] citrullination,[42] S-glutathiolation,[43] [44] [45] [46] S-nitrosylation[47] and carbonylation.[48]
Genetics
The cloning of the human MYBPC3 cDNA and localization of the gene on human chromosome 11p11.2 has assisted the structure and function of cMyBP-C.[49] MYBPC3 became therefore the “best” candidate gene for the CMH4 locus for hypertrophic cardiomyopathy that was initially mapped by the group of Schwartz.[50] MYBPC3 mutations segregating in families with hypertrophic cardiomyopathy have been identified.[51] [52] MYBPC3 was thus the fourth gene for hypertrophic cardiomyopathy, following MYH7, encoding β-myosin heavy chain, TNNT2 and TPM1, encoding cardiac troponin T and α-tropomyosin, respectively, earmarking hypertrophic cardiomyopathy (HCM) as a disease of the sarcomere. Truncation mutations in MYBPC3 stand as the primary cause of HCM.[53]
To date, roughly 350 mutations in MYBPC3 have been identified, and in large part, the mutations result in protein truncation, shifts in reading frames, and premature termination codons.[54] [55] Genetic studies have revealed significant overlap between genotypes and phenotypes as MYBPC3 mutations can lead to various forms of cardiomyopathies, such as dilated cardiomyopathy[56] and left ventricular noncompaction cardiomyopathy.[57] In patients with isolated or familial cases of dilated cardiomyoathy, MYBPC3 mutations represented the second highest number of known mutations.[56] Furthermore, a 25-bp intronic MYBPC3 deletion leading to protein truncation is present in 4% of the population in South India and is associated with a higher risk to develop heart failure.[58] Founder MYBPC3 mutations have been reported in Iceland, Italy, The Netherlands, Japan, France and Finland, where they represent a large percentage of cases with hypertrophic cardiomyopathy. All of them are truncating mutations, resulting in a shorter protein, lacking the regulatory phosphorylatable M motif and/or major binding domains to other sarcomeric proteins.[59] [60] [61] [62] [63] [64] [65] A body of evidence indicates that patients with more than 1 mutation often develop a more severe phenotype,[66] and a significant fraction of childhood-onset hypertrophic cardiomyopathy (14%) is caused by compound genetic variants.[67] This suggests that a gene-dosage effect might be responsible for manifestations at a younger age. A total of 51 cases of homozygotes or compound heterozygotes have been reported, most of them with double truncating MYBPC3 mutations and associated with severe cardiomyopathy, leading to heart failure and death within the first year of life.[68]
Pathomechanisms
A great understanding of how MYBPC3 mutations lead to the development of inherited cardiomyopathy came from the analyses of human myocardial samples, gene transfer in different cell lines, naturally-occurring or transgenic animal models and more recently disease modeling using induced pluripotent stem cells (iPSC)-derived cardiac myocytes.[69] [70] Although access to human myocardial samples is difficult, at least some studies provided evidence that truncated cMyBP-Cs, resulting from truncating MYBPC3 mutations are not detectable in human patient samples by Western-immunoblot analysis.[71] [72] [73] [74] This was supported in heterozygous Mybpc3-targeted knock-in mice,[75] carrying the human c.772G>A transition (i.e. founder mutation in Tuscany[63] These data suggest haploinsufficiency as the main disease mechanism for heterozygous truncating mutations.[76] [77] A body of evidence exists that the mechanisms regulating the expression of mutant allele involve the nonsense-mediated mRNA decay, the ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway after gene transfer of mutant MYBPC3 in cardiac myocytes or in mice in vivo.[78] [79] [75] [80] [81] [82] In contrast to truncating mutations, missense mutations lead, in most of the cases (although difficult to specifically detect), to stable mutant cMyBP-Cs that are, at least in part, incorporated into the sarcomere and could act as poison polypeptides on the structure and/or function of the sarcomere. Homozygous or compound heterozygous mutations are therefore likely subject to differential regulation depending on whether they are double missense, double truncating or mixed missense/truncating mutations. The homozygous Mybpc3-targeted knock-in mice, which genetically mimic the situation of severe neonatal cardiomyopathy are born without phenotype and soon after birth develop systolic dysfunction followed by (compensatory) cardiac hypertrophy.[83] The human c.772G>A transition results in low levels of three different mutant Mybpc3 mRNAs and cMyBP-Cs in homozygous mice, suggesting a combination of haploinsufficiency and polypeptide poisoning as disease mechanism in the homozygous state.[75] In addition, the combination of external stress (such as neurohumoral stress or aging) and Mybpc3 mutations have been shown to impair the UPS in mice,[84] [85] and proteasomal activities were also depressed in patients with hypertrophic cardiomyopathy or dilated cardiomyopathy.[86]
Skinned trabeculae or cardiac myocytes obtained from human patients carrying a MYBPC3 mutation or from heterozygous and homozygous Mybpc3-targeted knock-in mice exhibited higher myofilament Ca2+ sensitivity than controls.[87] [74] [88] [89] [90] Disease-modeling by engineered heart tissue (EHT) technology with cardiac cells from heterozygous or homozygous Mybpc3-targeted knock-in mice reproduced observations made in human and mouse studies displaying abbreviated contractions, greater sensitivity to external Ca2+ and smaller inotropic responses to various drugs (isoprenaline, EMD 57033 and verapamil) compared to wild-type control EHTs.[91] Therefore, EHTs are suitable to model the disease phenotype and recapitulate functional alterations found in mice with hypertrophic cardiomyopathy. Another good system for modeling cardiomyopathies in the cell culture dish is the derivation of cardiac myocytes from iPSC. Reports of human iPSC models of sarcomeric cardiomyopathies showed cellular hypertrophy in most of the cases,[92] [93] [94] [95] including one with the c.2995_3010del MYBPC3 mutation that exhibited in addition to hypertrophy contractile variability in the presence of endothelin-1.[95]
Therapy
Because of their tissue selectivity and persistent expression recombinant adeno-associated viruses (AAV) have therapeutic potential in the treatment of inherited cardiomyopathy resulting from MYBPC3 mutations-[96] Several targeting approaches have been developed.[97] [98] The most recent is genome editing to correct a mutation by CRISPR/Cas9 technology.[99] Naturally existing as part of the prokaryotic immune system, the CRISPR/Cas9 system has been used for correction of mutations in the mammalian genome.[100] By inducing nicks in the double-stranded DNA and providing a template DNA sequence, it is possible to repair mutations by homologous recombination. This approach has not yet been evaluated for MYBPC3 mutations, but it could be used for each single or clustered mutation, and therefore applied preferentially for frequent founder MYBPC3 mutations.
Other strategies targeting the mutant pre-mRNA by exon skipping and/or spliceosome-mediated RNA trans-splicing (SMaRT) have been evaluated for MYBPC3. Exon skipping can be achieved using antisense oligonucleotide (AON) masking exonic splicing enhancer sequences and therefore preventing binding of the splicing machinery and therefore resulting in exclusion of the exon from the mRNA.[101] [102] This approach can be applied when the resulting shorter, but in-frame translated protein maintains its function. Proof-of-concept of exon skipping was recently shown in homozygous Mybpc3-targeted knock-in mice.[103] Systemic administration of AAV-based AONs to Mybpc3-targeted knock-in newborn mice prevented both systolic dysfunction and left ventricular hypertrophy, at least for the duration of the investigated period.[103] For the human MYBPC3 gene, skipping of 6 single exons or 5 double exons with specific AONs would result in shortened in-frame cMyBP-Cs, allowing the preservation of the functionally important phosphorylation and protein interaction sites. With this approach, about half of missense or exonic/intronic truncating mutations could be removed, including 35 mutations in exon 25. The other strategy targeting the mutant pre-mRNA is SMaRT. Hereby, two independently transcribed molecules, the mutant pre-mRNA and the therapeutic pre-trans-splicing molecule carrying the wild-type sequence are spliced together to give rise to a repaired full-length mRNA.[104] Recently, the feasibility of this method was shown both in isolated cardiac myocytes and in vivo in the heart of homozygous Mybpc3-targeted knock-in mice, although the efficiency of the process was low and the amount of repaired protein was not sufficient to prevent the development of the cardiac disease phenotype.[83] In principle, however, this SmART strategy is superior to exon skipping or CRISPR/Cas9 genome editing and still attractive, because only two pre-trans-splicing molecules, targeting the 5’ and the 3’ of MYBPC3 pre-mRNA would be sufficient to bypass all MYBPC3 mutations associated with cardiomyopathies and therefore repair the mRNA.
AAV-mediated gene transfer of the full-length Mybpc3 (defined as “gene replacement”) dose-dependently prevents the development of cardiac hypertrophy and dysfunction in homozygous Mybpc3-targeted knock-in mice.[105] The dose-dependent expression of exogenous Mybpc3 was associated with the down-regulation of endogenous mutant Mybpc3. Additional expression of a sarcomeric protein is expected to replace partially or completely the endogenous protein level in the sarcomere, as it has been shown in transgenic mice expressing sarcomeric proteins.[69]
Further reading
- Vikstrom KL, Leinwand LA . Contractile protein mutations and heart disease . Current Opinion in Cell Biology . 8 . 1 . 97–105 . Feb 1996 . 8791411 . 10.1016/S0955-0674(96)80053-6 .
- Schaub MC, Hefti MA, Zuellig RA, Morano I . Modulation of contractility in human cardiac hypertrophy by myosin essential light chain isoforms . Cardiovascular Research . 37 . 2 . 381–404 . Feb 1998 . 9614495 . 10.1016/S0008-6363(97)00258-7 . free .
- Bonne G, Carrier L, Richard P, Hainque B, Schwartz K . Familial hypertrophic cardiomyopathy: from mutations to functional defects . Circulation Research . 83 . 6 . 580–93 . Sep 1998 . 9742053 . 10.1161/01.res.83.6.580 . free .
- Jääskeläinen P, Miettinen R, Kärkkäinen P, Toivonen L, Laakso M, Kuusisto J . Genetics of hypertrophic cardiomyopathy in eastern Finland: few founder mutations with benign or intermediary phenotypes . Annals of Medicine . 36 . 1 . 23–32 . 2004 . 15000344 . 10.1080/07853890310017161 . 29985750 . free .
- Starr R, Offer G . The interaction of C-protein with heavy meromyosin and subfragment-2 . The Biochemical Journal . 171 . 3 . 813–6 . Jun 1978 . 352343 . 1184031 . 10.1042/bj1710813.
- Moos C, Feng IN . Effect of C-protein on actomyosin ATPase . Biochimica et Biophysica Acta (BBA) - General Subjects . 632 . 2 . 141–9 . Oct 1980 . 6448079 . 10.1016/0304-4165(80)90071-9 .
- Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG, Seidman CE . Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy . Nature Genetics . 11 . 4 . 434–7 . Dec 1995 . 7493025 . 10.1038/ng1295-434 . 25615613 .
- Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, Gautel M, Labeit S, James M, Beckmann J, Weissenbach J, Vosberg HP, Fiszman M, Komajda M, Schwartz K . Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy . Nature Genetics . 11 . 4 . 438–40 . Dec 1995 . 7493026 . 10.1038/ng1295-438 . 11679535 .
- Gautel M, Zuffardi O, Freiburg A, Labeit S . Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? . The EMBO Journal . 14 . 9 . 1952–60 . May 1995 . 7744002 . 398294 . 10.1002/j.1460-2075.1995.tb07187.x.
- Carrier L, Hengstenberg C, Beckmann JS, Guicheney P, Dufour C, Bercovici J, Dausse E, Berebbi-Bertrand I, Wisnewsky C, Pulvenis D . Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11 . Nature Genetics . 4 . 3 . 311–3 . Jul 1993 . 8358441 . 10.1038/ng0793-311 . 7535967 .
- Freiburg A, Gautel M . A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy . European Journal of Biochemistry . 235 . 1–2 . 317–23 . Jan 1996 . 8631348 . 10.1111/j.1432-1033.1996.00317.x . free .
- Carrier L, Bonne G, Bährend E, Yu B, Richard P, Niel F, Hainque B, Cruaud C, Gary F, Labeit S, Bouhour JB, Dubourg O, Desnos M, Hagège AA, Trent RJ, Komajda M, Fiszman M, Schwartz K . Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy . Circulation Research . 80 . 3 . 427–34 . Mar 1997 . 9048664 . 10.1161/01.res.0000435859.24609.b3.
- Rottbauer W, Gautel M, Zehelein J, Labeit S, Franz WM, Fischer C, Vollrath B, Mall G, Dietz R, Kübler W, Katus HA . Novel splice donor site mutation in the cardiac myosin-binding protein-C gene in familial hypertrophic cardiomyopathy. Characterization Of cardiac transcript and protein . The Journal of Clinical Investigation . 100 . 2 . 475–82 . Jul 1997 . 9218526 . 508212 . 10.1172/JCI119555 .
- Yu B, French JA, Carrier L, Jeremy RW, McTaggart DR, Nicholson MR, Hambly B, Semsarian C, Richmond DR, Schwartz K, Trent RJ . Molecular pathology of familial hypertrophic cardiomyopathy caused by mutations in the cardiac myosin binding protein C gene . Journal of Medical Genetics . 35 . 3 . 205–10 . Mar 1998 . 9541104 . 1051243 . 10.1136/jmg.35.3.205 .
- Moolman-Smook JC, Mayosi B, Brink P, Corfield VA . Identification of a new missense mutation in MyBP-C associated with hypertrophic cardiomyopathy . Journal of Medical Genetics . 35 . 3 . 253–4 . Mar 1998 . 9541115 . 1051254 . 10.1136/jmg.35.3.253 .
- Niimura H, Bachinski LL, Sangwatanaroj S, Watkins H, Chudley AE, McKenna W, Kristinsson A, Roberts R, Sole M, Maron BJ, Seidman JG, Seidman CE . Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy . The New England Journal of Medicine . 338 . 18 . 1248–57 . Apr 1998 . 9562578 . 10.1056/NEJM199804303381802 . free .
- Richard P, Isnard R, Carrier L, Dubourg O, Donatien Y, Mathieu B, Bonne G, Gary F, Charron P, Hagege M, Komajda M, Schwartz K, Hainque B . Double heterozygosity for mutations in the beta-myosin heavy chain and in the cardiac myosin binding protein C genes in a family with hypertrophic cardiomyopathy . Journal of Medical Genetics . 36 . 7 . 542–5 . Jul 1999 . 10424815 . 1734410 . 10.1136/jmg.36.7.542 .
External links
Notes and References
- Gautel M, Zuffardi O, Freiburg A, Labeit S . Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? . The EMBO Journal . 14 . 9 . 1952–60 . May 1995 . 7744002 . 398294 . 10.1002/j.1460-2075.1995.tb07187.x.
- Fougerousse F, Delezoide AL, Fiszman MY, Schwartz K, Beckmann JS, Carrier L . Cardiac myosin binding protein C gene is specifically expressed in heart during murine and human development . Circulation Research . 82 . 1 . 130–3 . 1998 . 9440712 . 10.1161/01.res.82.1.130. free .
- Carrier L, Bonne G, Bährend E, Yu B, Richard P, Niel F, Hainque B, Cruaud C, Gary F, Labeit S, Bouhour JB, Dubourg O, Desnos M, Hagège AA, Trent RJ, Komajda M, Fiszman M, Schwartz K . Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy . Circulation Research . 80 . 3 . 427–34 . Mar 1997 . 9048664 . 10.1161/01.res.0000435859.24609.b3 .
- Web site: Protein Information - Myosin-binding protein C, cardiac-type . Cardiac Organellar Protein Atlas Knowledgebase (COPaKB) . NHLBI Proteomics Center at UCLA . 29 April 2015 .
- Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS, Deng N, Kim AK, Choi JH, Zelaya I, Liem D, Meyer D, Odeberg J, Fang C, Lu HJ, Xu T, Weiss J, Duan H, Uhlen M, Yates JR, Apweiler R, Ge J, Hermjakob H, Ping P . Integration of cardiac proteome biology and medicine by a specialized knowledgebase . Circulation Research . 113 . 9 . 1043–53 . Oct 2013 . 23965338 . 4076475 . 10.1161/CIRCRESAHA.113.301151 .
- Bennett P, Craig R, Starr R, Offer G . The ultrastructural location of C-protein, X-protein and H-protein in rabbit muscle . Journal of Muscle Research and Cell Motility . 7 . 6 . 550–67 . Dec 1986 . 3543050 . 10.1007/bf01753571. 855781 .
- Offer G, Moos C, Starr R . A new protein of the thick filaments of vertebrate skeletal myofibrils. Extractions, purification and characterization . Journal of Molecular Biology . 74 . 4 . 653–76 . Mar 1973 . 4269687 . 10.1016/0022-2836(73)90055-7.
- Freiburg A, Gautel M . A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy . European Journal of Biochemistry . 235 . 1–2 . 317–23 . Jan 1996 . 8631348 . 10.1111/j.1432-1033.1996.00317.x. free .
- Shaffer JF, Kensler RW, Harris SP . The myosin-binding protein C motif binds to F-actin in a phosphorylation-sensitive manner . The Journal of Biological Chemistry . 284 . 18 . 12318–27 . May 2009 . 19269976 . 2673300 . 10.1074/jbc.M808850200 . free .
- Winegrad S . Cardiac myosin binding protein C . Circulation Research . 84 . 10 . 1117–26 . May 1999 . 10347086 . 10.1161/01.res.84.10.1117. free .
- Koretz JF . Effects of C-protein on synthetic myosin filament structure . Biophysical Journal . 27 . 3 . 433–46 . Sep 1979 . 263692 . 1328598 . 10.1016/S0006-3495(79)85227-3 . 1979BpJ....27..433K .
- Colson BA, Bekyarova T, Fitzsimons DP, Irving TC, Moss RL . Radial displacement of myosin cross-bridges in mouse myocardium due to ablation of myosin binding protein-C . Journal of Molecular Biology . 367 . 1 . 36–41 . Mar 2007 . 17254601 . 1892277 . 10.1016/j.jmb.2006.12.063 .
- Harris SP, Bartley CR, Hacker TA, McDonald KS, Douglas PS, Greaser ML, Powers PA, Moss RL . Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice . Circulation Research . 90 . 5 . 594–601 . Mar 2002 . 11909824 . 10.1161/01.res.0000012222.70819.64. free .
- Carrier L, Knöll R, Vignier N, Keller DI, Bausero P, Prudhon B, Isnard R, Ambroisine ML, Fiszman M, Ross J, Schwartz K, Chien KR . Asymmetric septal hypertrophy in heterozygous cMyBP-C null mice . Cardiovascular Research . 63 . 2 . 293–304 . Aug 2004 . 15249187 . 10.1016/j.cardiores.2004.04.009 . free .
- Cazorla O, Szilagyi S, Vignier N, Salazar G, Krämer E, Vassort G, Carrier L, Lacampagne A . Length and protein kinase A modulations of myocytes in cardiac myosin binding protein C-deficient mice . Cardiovascular Research . 69 . 2 . 370–80 . Feb 2006 . 16380103 . 10.1016/j.cardiores.2005.11.009 . free .
- Brickson S, Fitzsimons DP, Pereira L, Hacker T, Valdivia H, Moss RL . In vivo left ventricular functional capacity is compromised in cMyBP-C null mice . American Journal of Physiology. Heart and Circulatory Physiology . 292 . 4 . H1747–54 . Apr 2007 . 17122190 . 10.1152/ajpheart.01037.2006 .
- Luther PK, Bennett PM, Knupp C, Craig R, Padrón R, Harris SP, Patel J, Moss RL . Understanding the organisation and role of myosin binding protein C in normal striated muscle by comparison with MyBP-C knockout cardiac muscle . Journal of Molecular Biology . 384 . 1 . 60–72 . Dec 2008 . 18817784 . 2593797 . 10.1016/j.jmb.2008.09.013 .
- Korte FS, McDonald KS, Harris SP, Moss RL . Loaded shortening, power output, and rate of force redevelopment are increased with knockout of cardiac myosin binding protein-C . Circulation Research . 93 . 8 . 752–8 . Oct 2003 . 14500336 . 10.1161/01.RES.0000096363.85588.9A . free .
- Palmer BM, Georgakopoulos D, Janssen PM, Wang Y, Alpert NR, Belardi DF, Harris SP, Moss RL, Burgon PG, Seidman CE, Seidman JG, Maughan DW, Kass DA . Role of cardiac myosin binding protein C in sustaining left ventricular systolic stiffening . Circulation Research . 94 . 9 . 1249–55 . May 2004 . 15059932 . 10.1161/01.RES.0000126898.95550.31 . free .
- Stelzer JE, Fitzsimons DP, Moss RL . Ablation of myosin-binding protein-C accelerates force development in mouse myocardium . Biophysical Journal . 90 . 11 . 4119–27 . Jun 2006 . 16513777 . 1459529 . 10.1529/biophysj.105.078147 . 2006BpJ....90.4119S .
- Gruen M, Gautel M . Mutations in beta-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin-binding protein-C . Journal of Molecular Biology . 286 . 3 . 933–49 . Feb 1999 . 10024460 . 10.1006/jmbi.1998.2522 .
- Kunst G, Kress KR, Gruen M, Uttenweiler D, Gautel M, Fink RH . Myosin binding protein C, a phosphorylation-dependent force regulator in muscle that controls the attachment of myosin heads by its interaction with myosin S2 . Circulation Research . 86 . 1 . 51–8 . 2000 . 10625305 . 10.1161/01.res.86.1.51. free .
- Harris SP, Rostkova E, Gautel M, Moss RL . Binding of myosin binding protein-C to myosin subfragment S2 affects contractility independent of a tether mechanism . Circulation Research . 95 . 9 . 930–6 . Oct 2004 . 15472117 . 10.1161/01.RES.0000147312.02673.56 . free .
- Ababou A, Gautel M, Pfuhl M . Dissecting the N-terminal myosin binding site of human cardiac myosin-binding protein C. Structure and myosin binding of domain C2 . The Journal of Biological Chemistry . 282 . 12 . 9204–15 . Mar 2007 . 17192269 . 10.1074/jbc.M610899200 . free .
- Pohlmann L, Kröger I, Vignier N, Schlossarek S, Krämer E, Coirault C, Sultan KR, El-Armouche A, Winegrad S, Eschenhagen T, Carrier L . Cardiac myosin-binding protein C is required for complete relaxation in intact myocytes . Circulation Research . 101 . 9 . 928–38 . Oct 2007 . 17823372 . 10.1161/CIRCRESAHA.107.158774 . free .
- Moss RL, Fitzsimons DP, Ralphe JC . Cardiac MyBP-C regulates the rate and force of contraction in mammalian myocardium . Circulation Research . 116 . 1 . 183–92 . Jan 2015 . 25552695 . 4283578 . 10.1161/CIRCRESAHA.116.300561 .
- Hartzell HC, Titus L . Effects of cholinergic and adrenergic agonists on phosphorylation of a 165,000-dalton myofibrillar protein in intact cardiac muscle . The Journal of Biological Chemistry . 257 . 4 . 2111–20 . Feb 1982 . 10.1016/S0021-9258(19)68153-6 . 6276407 . free .
- Hartzell HC, Glass DB . Phosphorylation of purified cardiac muscle C-protein by purified cAMP-dependent and endogenous Ca2+-calmodulin-dependent protein kinases . The Journal of Biological Chemistry . 259 . 24 . 15587–96 . Dec 1984 . 10.1016/S0021-9258(17)42588-9 . 6549009 . free .
- Gautel M, Zuffardi O, Freiburg A, Labeit S . Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? . The EMBO Journal . 14 . 9 . 1952–60 . May 1995 . 7744002 . 398294 . 10.1002/j.1460-2075.1995.tb07187.x .
- Mohamed AS, Dignam JD, Schlender KK . Cardiac myosin-binding protein C (MyBP-C): identification of protein kinase A and protein kinase C phosphorylation sites . Archives of Biochemistry and Biophysics . 358 . 2 . 313–9 . Oct 1998 . 9784245 . 10.1006/abbi.1998.0857 .
- McClellan G, Kulikovskaya I, Winegrad S . Changes in cardiac contractility related to calcium-mediated changes in phosphorylation of myosin-binding protein C . Biophysical Journal . 81 . 2 . 1083–92 . Aug 2001 . 11463649 . 1301577 . 10.1016/S0006-3495(01)75765-7 . 2001BpJ....81.1083M .
- Sadayappan S, Gulick J, Osinska H, Barefield D, Cuello F, Avkiran M, Lasko VM, Lorenz JN, Maillet M, Martin JL, Brown JH, Bers DM, Molkentin JD, James J, Robbins J . A critical function for Ser-282 in cardiac Myosin binding protein-C phosphorylation and cardiac function . Circulation Research . 109 . 2 . 141–50 . Jul 2011 . 21597010 . 3132348 . 10.1161/CIRCRESAHA.111.242560 .
- Cuello F, Bardswell SC, Haworth RS, Ehler E, Sadayappan S, Kentish JC, Avkiran M . Novel role for p90 ribosomal S6 kinase in the regulation of cardiac myofilament phosphorylation . The Journal of Biological Chemistry . 286 . 7 . 5300–10 . Feb 2011 . 21148481 . 3037642 . 10.1074/jbc.M110.202713 . free .
- Bardswell SC, Cuello F, Rowland AJ, Sadayappan S, Robbins J, Gautel M, Walker JW, Kentish JC, Avkiran M . Distinct sarcomeric substrates are responsible for protein kinase D-mediated regulation of cardiac myofilament Ca2+ sensitivity and cross-bridge cycling . The Journal of Biological Chemistry . 285 . 8 . 5674–82 . Feb 2010 . 20018870 . 2820795 . 10.1074/jbc.M109.066456 . free .
- Dirkx E, Cazorla O, Schwenk RW, Lorenzen-Schmidt I, Sadayappan S, Van Lint J, Carrier L, van Eys GJ, Glatz JF, Luiken JJ . Protein kinase D increases maximal Ca2+-activated tension of cardiomyocyte contraction by phosphorylation of cMyBP-C-Ser315 . American Journal of Physiology. Heart and Circulatory Physiology . 303 . 3 . H323–31 . Aug 2012 . 22636676 . 10.1152/ajpheart.00749.2011 . 6734090 .
- Kuster DW, Sequeira V, Najafi A, Boontje NM, Wijnker PJ, Witjas-Paalberends ER, Marston SB, Dos Remedios CG, Carrier L, Demmers JA, Redwood C, Sadayappan S, van der Velden J . GSK3β phosphorylates newly identified site in the proline-alanine-rich region of cardiac myosin-binding protein C and alters cross-bridge cycling kinetics in human: short communication . Circulation Research . 112 . 4 . 633–9 . Feb 2013 . 23277198 . 3595322 . 10.1161/CIRCRESAHA.112.275602 .
- Govindan S, Sarkey J, Ji X, Sundaresan NR, Gupta MP, de Tombe PP, Sadayappan S . Pathogenic properties of the N-terminal region of cardiac myosin binding protein-C in vitro . Journal of Muscle Research and Cell Motility . 33 . 1 . 17–30 . May 2012 . 22527638 . 3368277 . 10.1007/s10974-012-9292-y .
- Witayavanitkul N, Ait Mou Y, Kuster DW, Khairallah RJ, Sarkey J, Govindan S, Chen X, Ge Y, Rajan S, Wieczorek DF, Irving T, Westfall MV, de Tombe PP, Sadayappan S . Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium . The Journal of Biological Chemistry . 289 . 13 . 8818–27 . Mar 2014 . 24509847 . 3979389 . 10.1074/jbc.M113.541128 . free .
- El-Armouche A, Pohlmann L, Schlossarek S, Starbatty J, Yeh YH, Nattel S, Dobrev D, Eschenhagen T, Carrier L . Decreased phosphorylation levels of cardiac myosin-binding protein-C in human and experimental heart failure . Journal of Molecular and Cellular Cardiology . 43 . 2 . 223–9 . Aug 2007 . 17560599 . 10.1016/j.yjmcc.2007.05.003 .
- Copeland O, Sadayappan S, Messer AE, Steinen GJ, van der Velden J, Marston SB . Analysis of cardiac myosin binding protein-C phosphorylation in human heart muscle . Journal of Molecular and Cellular Cardiology . 49 . 6 . 1003–11 . Dec 2010 . 20850451 . 10.1016/j.yjmcc.2010.09.007 .
- Ge Y, Rybakova IN, Xu Q, Moss RL . Top-down high-resolution mass spectrometry of cardiac myosin binding protein C revealed that truncation alters protein phosphorylation state . Proceedings of the National Academy of Sciences of the United States of America . 106 . 31 . 12658–63 . Aug 2009 . 19541641 . 2722289 . 10.1073/pnas.0813369106 . 2009PNAS..10612658G . free .
- Fert-Bober J, Sokolove J . Proteomics of citrullination in cardiovascular disease . Proteomics: Clinical Applications . 8 . 7–8 . 522–33 . Aug 2014 . 24946285 . 10.1002/prca.201400013 . 7008319 .
- Brennan JP, Miller JI, Fuller W, Wait R, Begum S, Dunn MJ, Eaton P . The utility of N,N-biotinyl glutathione disulfide in the study of protein S-glutathiolation . Molecular & Cellular Proteomics . 5 . 2 . 215–25 . Feb 2006 . 16223748 . 10.1074/mcp.M500212-MCP200 . free .
- Lovelock JD, Monasky MM, Jeong EM, Lardin HA, Liu H, Patel BG, Taglieri DM, Gu L, Kumar P, Pokhrel N, Zeng D, Belardinelli L, Sorescu D, Solaro RJ, Dudley SC . Ranolazine improves cardiac diastolic dysfunction through modulation of myofilament calcium sensitivity . Circulation Research . 110 . 6 . 841–50 . Mar 2012 . 22343711 . 3314887 . 10.1161/CIRCRESAHA.111.258251 .
- Jeong EM, Monasky MM, Gu L, Taglieri DM, Patel BG, Liu H, Wang Q, Greener I, Dudley SC, Solaro RJ . Tetrahydrobiopterin improves diastolic dysfunction by reversing changes in myofilament properties . Journal of Molecular and Cellular Cardiology . 56 . 44–54 . Mar 2013 . 23247392 . 3666585 . 10.1016/j.yjmcc.2012.12.003 .
- Patel BG, Wilder T, Solaro RJ . Novel control of cardiac myofilament response to calcium by S-glutathionylation at specific sites of myosin binding protein C . Frontiers in Physiology . 4 . 336 . 2013 . 24312057 . 3834529 . 10.3389/fphys.2013.00336 . free .
- Kohr MJ, Aponte AM, Sun J, Wang G, Murphy E, Gucek M, Steenbergen C . Characterization of potential S-nitrosylation sites in the myocardium . American Journal of Physiology. Heart and Circulatory Physiology . 300 . 4 . H1327–35 . Apr 2011 . 21278135 . 3075037 . 10.1152/ajpheart.00997.2010 .
- Aryal B, Jeong J, Rao VA . Doxorubicin-induced carbonylation and degradation of cardiac myosin binding protein C promote cardiotoxicity . Proceedings of the National Academy of Sciences of the United States of America . 111 . 5 . 2011–6 . Feb 2014 . 24449919 . 3918758 . 10.1073/pnas.1321783111 . 2014PNAS..111.2011A . free .
- Gautel M, Zuffardi O, Freiburg A, Labeit S . Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? . The EMBO Journal . 14 . 9 . 1952–60 . May 1995 . 7744002 . 398294. 10.1002/j.1460-2075.1995.tb07187.x .
- Carrier L, Hengstenberg C, Beckmann JS, Guicheney P, Dufour C, Bercovici J, Dausse E, Berebbi-Bertrand I, Wisnewsky C, Pulvenis D . Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11 . Nature Genetics . 4 . 3 . 311–3 . Jul 1993 . 8358441 . 10.1038/ng0793-311 . 7535967 .
- Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, Gautel M, Labeit S, James M, Beckmann J, Weissenbach J, Vosberg HP, Fiszman M, Komajda M, Schwartz K . Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy . Nature Genetics . 11 . 4 . 438–40 . Dec 1995 . 7493026 . 10.1038/ng1295-438 . 11679535 .
- Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, Maron BJ, Seidman JG, Seidman CE . Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy . Nature Genetics . 11 . 4 . 434–7 . Dec 1995 . 7493025 . 10.1038/ng1295-434 . 25615613 .
- O'Leary . Thomas S. . Snyder . Julia . Sadayappan . Sakthivel . Day . Sharlene M. . Previs . Michael J. . 2019 . MYBPC3 truncation mutations enhance actomyosin contractile mechanics in human hypertrophic cardiomyopathy . Journal of Molecular and Cellular Cardiology . 127 . 165–173 . 10.1016/j.yjmcc.2018.12.003 . 30550750 . 0022-2828. 6592272 .
- Harris SP, Lyons RG, Bezold KL . In the thick of it: HCM-causing mutations in myosin binding proteins of the thick filament . Circulation Research . 108 . 6 . 751–64 . Mar 2011 . 21415409 . 3076008 . 10.1161/CIRCRESAHA.110.231670 .
- Behrens-Gawlik V, Mearini G, Gedicke-Hornung C, Richard P, Carrier L . MYBPC3 in hypertrophic cardiomyopathy: from mutation identification to RNA-based correction . Pflügers Archiv . 466 . 2 . 215–23 . Feb 2014 . 24337823 . 10.1007/s00424-013-1409-7 . 6625266 .
- Haas J, Frese KS, Peil B, Kloos W, Keller A, Nietsch R, Feng Z, Müller S, Kayvanpour E, Vogel B, Sedaghat-Hamedani F, Lim WK, Zhao X, Fradkin D, Köhler D, Fischer S, Franke J, Marquart S, Barb I, Li DT, Amr A, Ehlermann P, Mereles D, Weis T, Hassel S, Kremer A, King V, Wirsz E, Isnard R, Komajda M, Serio A, Grasso M, Syrris P, Wicks E, Plagnol V, Lopes L, Gadgaard T, Eiskjær H, Jørgensen M, Garcia-Giustiniani D, Ortiz-Genga M, Crespo-Leiro MG, Deprez RH, Christiaans I, van Rijsingen IA, Wilde AA, Waldenstrom A, Bolognesi M, Bellazzi R, Mörner S, Bermejo JL, Monserrat L, Villard E, Mogensen J, Pinto YM, Charron P, Elliott P, Arbustini E, Katus HA, Meder B . Atlas of the clinical genetics of human dilated cardiomyopathy . European Heart Journal . 36 . 18 . 1123–35 . May 2015 . 25163546 . 10.1093/eurheartj/ehu301 . free . 2183/19982 . free .
- Probst S, Oechslin E, Schuler P, Greutmann M, Boyé P, Knirsch W, Berger F, Thierfelder L, Jenni R, Klaassen S . Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype . Circulation: Cardiovascular Genetics . 4 . 4 . 367–74 . Aug 2011 . 21551322 . 10.1161/CIRCGENETICS.110.959270 . free .
- Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS, Nallari P, Rai TS, Khullar M, Soares P, Bahl A, Tharkan JM, Vaideeswar P, Rathinavel A, Narasimhan C, Ayapati DR, Ayub Q, Mehdi SQ, Oppenheimer S, Richards MB, Price AL, Patterson N, Reich D, Singh L, Tyler-Smith C, Thangaraj K . A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia . Nature Genetics . 41 . 2 . 187–91 . Feb 2009 . 19151713 . 2697598 . 10.1038/ng.309 .
- Adalsteinsdottir B, Teekakirikul P, Maron BJ, Burke MA, Gudbjartsson DF, Holm H, Stefansson K, DePalma SR, Mazaika E, McDonough B, Danielsen R, Seidman JG, Seidman CE, Gunnarsson GT . Nationwide study on hypertrophic cardiomyopathy in Iceland: evidence of a MYBPC3 founder mutation . Circulation . 130 . 14 . 1158–67 . Sep 2014 . 25078086 . 10.1161/CIRCULATIONAHA.114.011207 . free .
- Calore C, De Bortoli M, Romualdi C, Lorenzon A, Angelini A, Basso C, Thiene G, Iliceto S, Rampazzo A, Melacini P . A founder MYBPC3 mutation results in HCM with a high risk of sudden death after the fourth decade of life . Journal of Medical Genetics . 52 . 5 . 338–47 . May 2015 . 25740977 . 10.1136/jmedgenet-2014-102923 . 35343228 .
- Christiaans I, Nannenberg EA, Dooijes D, Jongbloed RJ, Michels M, Postema PG, Majoor-Krakauer D, van den Wijngaard A, Mannens MM, van Tintelen JP, van Langen IM, Wilde AA . Founder mutations in hypertrophic cardiomyopathy patients in the Netherlands . Netherlands Heart Journal . 18 . 5 . 248–54 . May 2010 . 20505798 . 2871745 . 10.1007/bf03091771.
- Kubo T, Kitaoka H, Okawa M, Matsumura Y, Hitomi N, Yamasaki N, Furuno T, Takata J, Nishinaga M, Kimura A, Doi YL . Lifelong left ventricular remodeling of hypertrophic cardiomyopathy caused by a founder frameshift deletion mutation in the cardiac Myosin-binding protein C gene among Japanese . Journal of the American College of Cardiology . 46 . 9 . 1737–43 . Nov 2005 . 16256878 . 10.1016/j.jacc.2005.05.087 . free .
- Girolami F, Olivotto I, Passerini I, Zachara E, Nistri S, Re F, Fantini S, Baldini K, Torricelli F, Cecchi F . A molecular screening strategy based on beta-myosin heavy chain, cardiac myosin binding protein C and troponin T genes in Italian patients with hypertrophic cardiomyopathy . Journal of Cardiovascular Medicine . 7 . 8 . 601–7 . Aug 2006 . 16858239 . 10.2459/01.JCM.0000237908.26377.d6 . 20926873 .
- Teirlinck CH, Senni F, Malti RE, Majoor-Krakauer D, Fellmann F, Millat G, André-Fouët X, Pernot F, Stumpf M, Boutarin J, Bouvagnet P . A human MYBPC3 mutation appearing about 10 centuries ago results in a hypertrophic cardiomyopathy with delayed onset, moderate evolution but with a risk of sudden death . BMC Medical Genetics . 13 . 105 . 2012 . 23140321 . 3549277 . 10.1186/1471-2350-13-105 . free .
- Jääskeläinen P, Miettinen R, Kärkkäinen P, Toivonen L, Laakso M, Kuusisto J . Genetics of hypertrophic cardiomyopathy in eastern Finland: few founder mutations with benign or intermediary phenotypes . Annals of Medicine . 36 . 1 . 23–32 . 2004 . 15000344 . 10.1080/07853890310017161. 29985750 . free .
- Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M . Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy . Circulation . 107 . 17 . 2227–32 . May 2003 . 12707239 . 10.1161/01.CIR.0000066323.15244.54 . free .
- Morita H, Rehm HL, Menesses A, McDonough B, Roberts AE, Kucherlapati R, Towbin JA, Seidman JG, Seidman CE . Shared genetic causes of cardiac hypertrophy in children and adults . The New England Journal of Medicine . 358 . 18 . 1899–908 . May 2008 . 18403758 . 2752150 . 10.1056/NEJMoa075463 .
- Wessels MW, Herkert JC, Frohn-Mulder IM, Dalinghaus M, van den Wijngaard A, de Krijger RR, Michels M, de Coo IF, Hoedemaekers YM, Dooijes D . Compound heterozygous or homozygous truncating MYBPC3 mutations cause lethal cardiomyopathy with features of noncompaction and septal defects . European Journal of Human Genetics . Oct 2014 . 25335496 . 10.1038/ejhg.2014.211 . 23 . 7 . 922–8 . 4463499.
- Duncker DJ, Bakkers J, Brundel BJ, Robbins J, Tardiff JC, Carrier L . Animal and in silico models for the study of sarcomeric cardiomyopathies . Cardiovascular Research . 105 . 4 . 439–48 . Apr 2015 . 25600962 . 10.1093/cvr/cvv006 . 4375391.
- Eschenhagen T, Mummery C, Knollmann BC . Modelling sarcomeric cardiomyopathies in the dish: from human heart samples to iPSC cardiomyocytes . Cardiovascular Research . 105 . 4 . 424–38 . Apr 2015 . 25618410 . 10.1093/cvr/cvv017 . 4349163.
- Rottbauer W, Gautel M, Zehelein J, Labeit S, Franz WM, Fischer C, Vollrath B, Mall G, Dietz R, Kübler W, Katus HA . Novel splice donor site mutation in the cardiac myosin-binding protein-C gene in familial hypertrophic cardiomyopathy. Characterization Of cardiac transcript and protein . The Journal of Clinical Investigation . 100 . 2 . 475–82 . Jul 1997 . 9218526 . 10.1172/JCI119555 . 508212.
- Moolman JA, Reith S, Uhl K, Bailey S, Gautel M, Jeschke B, Fischer C, Ochs J, McKenna WJ, Klues H, Vosberg HP . A newly created splice donor site in exon 25 of the MyBP-C gene is responsible for inherited hypertrophic cardiomyopathy with incomplete disease penetrance . Circulation . 101 . 12 . 1396–402 . Mar 2000 . 10736283 . 10.1161/01.cir.101.12.1396. free .
- Marston S, Copeland O, Jacques A, Livesey K, Tsang V, McKenna WJ, Jalilzadeh S, Carballo S, Redwood C, Watkins H . Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency . Circulation Research . 105 . 3 . 219–22 . Jul 2009 . 19574547 . 10.1161/CIRCRESAHA.109.202440 . free . 10044/1/19192 . free .
- van Dijk SJ, Dooijes D, dos Remedios C, Michels M, Lamers JM, Winegrad S, Schlossarek S, Carrier L, ten Cate FJ, Stienen GJ, van der Velden J . Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy: haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction . Circulation . 119 . 11 . 1473–83 . Mar 2009 . 19273718 . 10.1161/CIRCULATIONAHA.108.838672 . free .
- Vignier N, Schlossarek S, Fraysse B, Mearini G, Krämer E, Pointu H, Mougenot N, Guiard J, Reimer R, Hohenberg H, Schwartz K, Vernet M, Eschenhagen T, Carrier L . Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice . Circulation Research . 105 . 3 . 239–48 . Jul 2009 . 19590044 . 10.1161/CIRCRESAHA.109.201251 . free .
- Marston S, Copeland O, Gehmlich K, Schlossarek S, Carrier L, Carrier L . How do MYBPC3 mutations cause hypertrophic cardiomyopathy? . Journal of Muscle Research and Cell Motility . 33 . 1 . 75–80 . May 2012 . 22057632 . 10.1007/s10974-011-9268-3 . 10978237 .
- van der Velden J, Ho CY, Tardiff JC, Olivotto I, Knollmann BC, Carrier L . Research priorities in sarcomeric cardiomyopathies . Cardiovascular Research . 105 . 4 . 449–56 . Apr 2015 . 25631582 . 10.1093/cvr/cvv019 . 4375392.
- Sarikas A, Carrier L, Schenke C, Doll D, Flavigny J, Lindenberg KS, Eschenhagen T, Zolk O . Impairment of the ubiquitin-proteasome system by truncated cardiac myosin binding protein C mutants . Cardiovascular Research . 66 . 1 . 33–44 . Apr 2005 . 15769446 . 10.1016/j.cardiores.2005.01.004 . free .
- Bahrudin U, Morisaki H, Morisaki T, Ninomiya H, Higaki K, Nanba E, Igawa O, Takashima S, Mizuta E, Miake J, Yamamoto Y, Shirayoshi Y, Kitakaze M, Carrier L, Hisatome I . Ubiquitin-proteasome system impairment caused by a missense cardiac myosin-binding protein C mutation and associated with cardiac dysfunction in hypertrophic cardiomyopathy . Journal of Molecular Biology . 384 . 4 . 896–907 . Dec 2008 . 18929575 . 10.1016/j.jmb.2008.09.070 .
- Mearini G, Schlossarek S, Willis MS, Carrier L . The ubiquitin-proteasome system in cardiac dysfunction . Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease . 1782 . 12 . 749–63 . Dec 2008 . 18634872 . 10.1016/j.bbadis.2008.06.009 . 14570410 .
- Carrier L, Schlossarek S, Willis MS, Eschenhagen T . The ubiquitin-proteasome system and nonsense-mediated mRNA decay in hypertrophic cardiomyopathy . Cardiovascular Research . 85 . 2 . 330–8 . Jan 2010 . 19617224 . 10.1093/cvr/cvp247 . 4023315.
- Schlossarek S, Frey N, Carrier L . Ubiquitin-proteasome system and hereditary cardiomyopathies . Journal of Molecular and Cellular Cardiology . 71 . 25–31 . Jun 2014 . 24380728 . 10.1016/j.yjmcc.2013.12.016 . free .
- Mearini G, Stimpel D, Krämer E, Geertz B, Braren I, Gedicke-Hornung C, Précigout G, Müller OJ, Katus HA, Eschenhagen T, Voit T, Garcia L, Lorain S, Carrier L . Repair of Mybpc3 mRNA by 5'-trans-splicing in a Mouse Model of Hypertrophic Cardiomyopathy . Molecular Therapy: Nucleic Acids . 2 . e102 . 23820890 . 10.1038/mtna.2013.31 . 2013 . 7 . 3731888.
- Schlossarek S, Englmann DR, Sultan KR, Sauer M, Eschenhagen T, Carrier L . Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy . Basic Research in Cardiology . 107 . 1 . 235 . Jan 2012 . 22189562 . 10.1007/s00395-011-0235-3 . 6472866 .
- Schlossarek S, Schuermann F, Geertz B, Mearini G, Eschenhagen T, Carrier L . Adrenergic stress reveals septal hypertrophy and proteasome impairment in heterozygous Mybpc3-targeted knock-in mice . Journal of Muscle Research and Cell Motility . 33 . 1 . 5–15 . May 2012 . 22076249 . 10.1007/s10974-011-9273-6 . 17638722 .
- Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM . Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies . Circulation . 121 . 8 . 997–1004 . Mar 2010 . 20159828 . 10.1161/CIRCULATIONAHA.109.904557 . 2857348.
- Witt CC, Gerull B, Davies MJ, Centner T, Linke WA, Thierfelder L . Hypercontractile properties of cardiac muscle fibers in a knock-in mouse model of cardiac myosin-binding protein-C . The Journal of Biological Chemistry . 276 . 7 . 5353–9 . Feb 2001 . 11096095 . 10.1074/jbc.M008691200 . free .
- Fraysse B, Weinberger F, Bardswell SC, Cuello F, Vignier N, Geertz B, Starbatty J, Krämer E, Coirault C, Eschenhagen T, Kentish JC, Avkiran M, Carrier L . Increased myofilament Ca2+ sensitivity and diastolic dysfunction as early consequences of Mybpc3 mutation in heterozygous knock-in mice . Journal of Molecular and Cellular Cardiology . 52 . 6 . 1299–307 . Jun 2012 . 22465693 . 10.1016/j.yjmcc.2012.03.009 . 3370652.
- van Dijk SJ, Paalberends ER, Najafi A, Michels M, Sadayappan S, Carrier L, Boontje NM, Kuster DW, van Slegtenhorst M, Dooijes D, dos Remedios C, ten Cate FJ, Stienen GJ, van der Velden J . Contractile dysfunction irrespective of the mutant protein in human hypertrophic cardiomyopathy with normal systolic function . Circulation: Heart Failure . 5 . 1 . 36–46 . Jan 2012 . 22178992 . 10.1161/CIRCHEARTFAILURE.111.963702 . free .
- Sequeira V, Wijnker PJ, Nijenkamp LL, Kuster DW, Najafi A, Witjas-Paalberends ER, Regan JA, Boontje N, Ten Cate FJ, Germans T, Carrier L, Sadayappan S, van Slegtenhorst MA, Zaremba R, Foster DB, Murphy AM, Poggesi C, Dos Remedios C, Stienen GJ, Ho CY, Michels M, van der Velden J . Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations . Circulation Research . 112 . 11 . 1491–505 . May 2013 . 23508784 . 10.1161/CIRCRESAHA.111.300436 . 3675884.
- Stöhr A, Friedrich FW, Flenner F, Geertz B, Eder A, Schaaf S, Hirt MN, Uebeler J, Schlossarek S, Carrier L, Hansen A, Eschenhagen T . Contractile abnormalities and altered drug response in engineered heart tissue from Mybpc3-targeted knock-in mice . Journal of Molecular and Cellular Cardiology . 63 . 189–98 . Oct 2013 . 23896226 . 10.1016/j.yjmcc.2013.07.011 . free .
- Jung G, Bernstein D . hiPSC Modeling of Inherited Cardiomyopathies . Current Treatment Options in Cardiovascular Medicine . 16 . 7 . 320 . Jul 2014 . 24838688 . 10.1007/s11936-014-0320-7 . 4096486.
- Lan F, Lee AS, Liang P, Sanchez-Freire V, Nguyen PK, Wang L, Han L, Yen M, Wang Y, Sun N, Abilez OJ, Hu S, Ebert AD, Navarrete EG, Simmons CS, Wheeler M, Pruitt B, Lewis R, Yamaguchi Y, Ashley EA, Bers DM, Robbins RC, Longaker MT, Wu JC . Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells . Cell Stem Cell . 12 . 1 . 101–13 . Jan 2013 . 23290139 . 10.1016/j.stem.2012.10.010 . 3638033.
- Han L, Li Y, Tchao J, Kaplan AD, Lin B, Li Y, Mich-Basso J, Lis A, Hassan N, London B, Bett GC, Tobita K, Rasmusson RL, Yang L . Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells . Cardiovascular Research . 104 . 2 . 258–69 . Nov 2014 . 25209314 . 10.1093/cvr/cvu205 . 4217687.
- Tanaka A, Yuasa S, Mearini G, Egashira T, Seki T, Kodaira M, Kusumoto D, Kuroda Y, Okata S, Suzuki T, Inohara T, Arimura T, Makino S, Kimura K, Kimura A, Furukawa T, Carrier L, Node K, Fukuda K . Endothelin-1 induces myofibrillar disarray and contractile vector variability in hypertrophic cardiomyopathy-induced pluripotent stem cell-derived cardiomyocytes . Journal of the American Heart Association . 3 . 6 . e001263 . Dec 2014 . 25389285 . 10.1161/JAHA.114.001263 . 4338713.
- Zacchigna S, Zentilin L, Giacca M . Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system . Circulation Research . 114 . 11 . 1827–46 . May 2014 . 24855205 . 10.1161/CIRCRESAHA.114.302331 . free .
- Hammond SM, Wood MJ . Genetic therapies for RNA mis-splicing diseases . Trends in Genetics . 27 . 5 . 196–205 . May 2011 . 21497936 . 10.1016/j.tig.2011.02.004 .
- Doudna JA, Charpentier E . Genome editing. The new frontier of genome engineering with CRISPR-Cas9 . Science . 346 . 6213 . 1258096 . Nov 2014 . 25430774 . 10.1126/science.1258096 . 6299381 .
- Hsu PD, Lander ES, Zhang F . Development and applications of CRISPR-Cas9 for genome engineering . Cell . 157 . 6 . 1262–78 . Jun 2014 . 24906146 . 10.1016/j.cell.2014.05.010 . 4343198.
- Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F . Genome engineering using the CRISPR-Cas9 system . Nature Protocols . 8 . 11 . 2281–308 . Nov 2013 . 24157548 . 10.1038/nprot.2013.143 . 3969860.
- Woodley L, Valcárcel J . Regulation of alternative pre-mRNA splicing . Briefings in Functional Genomics & Proteomics . 1 . 3 . 266–77 . Oct 2002 . 15239893 . 10.1093/bfgp/1.3.266. free .
- Goyenvalle A, Vulin A, Fougerousse F, Leturcq F, Kaplan JC, Garcia L, Danos O . Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping . Science . 306 . 5702 . 1796–9 . Dec 2004 . 15528407 . 10.1126/science.1104297 . 2004Sci...306.1796G . 9359783 . free .
- Gedicke-Hornung C, Behrens-Gawlik V, Reischmann S, Geertz B, Stimpel D, Weinberger F, Schlossarek S, Précigout G, Braren I, Eschenhagen T, Mearini G, Lorain S, Voit T, Dreyfus PA, Garcia L, Carrier L . Rescue of cardiomyopathy through U7snRNA-mediated exon skipping in Mybpc3-targeted knock-in mice . EMBO Molecular Medicine . 5 . 7 . 1128–1145. Jul 2013 . 23716398 . 10.1002/emmm.201202168 . 3721478.
- Wally V, Murauer EM, Bauer JW . Spliceosome-mediated trans-splicing: the therapeutic cut and paste . The Journal of Investigative Dermatology . 132 . 8 . 1959–66 . Aug 2012 . 22495179 . 10.1038/jid.2012.101 . free .
- Mearini G, Stimpel D, Geertz B, Weinberger F, Krämer E, Schlossarek S, Mourot-Filiatre J, Stoehr A, Dutsch A, Wijnker PJ, Braren I, Katus HA, Müller OJ, Voit T, Eschenhagen T, Carrier L . Mybpc3 gene therapy for neonatal cardiomyopathy enables long-term disease prevention in mice . Nature Communications . 5 . 5515 . 25463264 . 10.1038/ncomms6515 . 2014. 2014NatCo...5.5515M . free .