Multiscale turbulence explained
Multiscale turbulence is a class of turbulent flows in which the chaotic motion of the fluid is forced at different length and/or time scales.[1] [2] This is usually achieved by immersing in a moving fluid a body with a multiscale, often fractal-like, arrangement of length scales. This arrangement of scales can be either passive[3] [4] or active[5]
As turbulent flows contain eddies with a wide range of scales, exciting the turbulence at particular scales (or range of scales) allows one to fine-tune the properties of that flow. Multiscale turbulent flows have been successfully applied in different fields.,[6] such as:
Multiscale turbulence has also played an important role into probing the internal structure of turbulence.[15] This sort of turbulence allowed researchers to unveil a novel dissipation law in which the parameter
in
is not constant, as required by the Richardson-Kolmogorov energy cascade. This new law[15] can be expressed as
, with
, where
and
are
Reynolds numbers based, respectively, on initial/global conditions (such as
free-stream velocity and the object's
length scale) and local conditions (such as the
rms velocity and integral length scale). This new
dissipation law characterises non-equilibrium turbulence apparently universally in various flows (not just multiscale turbulence) and results from non-equilibrium unsteady
energy cascade. This imbalance implies that new mean flow scalings exist for free shear turbulent flows, as already observed in axisymmetric wakes
[15] [16] Notes and References
- Laizet. S.. Vassilicos. J. C.. Multiscale Generation of Turbulence. Journal of Multiscale Modelling. January 2009. 01. 1. 177–196. 10.1142/S1756973709000098.
- Mazzi. B.. Vassilicos. J. C.. Fractal-generated turbulence. Journal of Fluid Mechanics. 10 March 2004. 502. 65–87. 10.1017/S0022112003007249. 2004JFM...502...65M. 10.1.1.475.2171. 58933525 .
- Hurst. D.. Vassilicos. J. C.. Scalings and decay of fractal-generated turbulence. Physics of Fluids. 2007. 19. 3. 035103–035103–31. 10.1063/1.2676448. 2007PhFl...19c5103H.
- Nagata. K.. Sakai. Y.. Inaba. T.. Suzuki. H.. Terashima. O.. Suzuki. H.. Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence. Physics of Fluids. 2013. 25. 6. 065102–065102–26. 10.1063/1.4811402. 2013PhFl...25f5102N.
- Thormann. A.. Meneveau. C.. Decay of homogeneous, nearly isotropic turbulence behind active fractal grids. Physics of Fluids. February 2014. 26. 2. 025112. 10.1063/1.4865232. 2014PhFl...26b5112T.
- Special issue of selected papers from the second UK–Japan bilateral Workshop and First ERCOFTAC Workshop on Turbulent Flows Generated/Designed in Multiscale/Fractal Ways, London, March 2012. Fluid Dynamics Research. 1 December 2013. 45. 6. 061001. 10.1088/0169-5983/45/6/061001. 2013FlDyR..45f1001L. Laizet. Sylvain. Sakai. Yasuhiko. Christos Vassilicos. J.. free.
- Nedić, J., B. Ganapathisubramani, J. C. Vassilicos, J. Boree, L. E. Brizzi, A. Spohn. "Aeroacoustic performance of fractal spoilers". AIAA journal 2012.
- Cafiero. G.. Discetti. S.. Astarita. T.. Heat transfer enhancement of impinging jets with fractal-generated turbulence. International Journal of Heat and Mass Transfer. August 2014. 75. 173–183. 10.1016/j.ijheatmasstransfer.2014.03.049.
- Nedić. J.. Ganapathisubramani. B.. Vassilicos. J. C.. Drag and near wake characteristics of flat plates normal to the flow with fractal edge geometries. Fluid Dynamics Research. 1 December 2013. 45. 6. 061406. 10.1088/0169-5983/45/6/061406. 2013FlDyR..45f1406N. 119569184 .
- Laizet. S.. Vassilicos. J. C.. Stirring and scalar transfer by grid-generated turbulence in the presence of a mean scalar gradient. Journal of Fluid Mechanics. 23 December 2014. 764. 52–75. 10.1017/jfm.2014.695. 2015JFM...764...52L. 10044/1/21530. 122885256 . free.
- Suzuki. H.. Nagata. K.. Sakai. Y.. Hayase. T.. Direct numerical simulation of turbulent mixing in regular and fractal grid turbulence. Physica Scripta. 1 December 2010. T142. 014065. 10.1088/0031-8949/2010/T142/014065. 2010PhST..142a4065S. 120566583 .
- Manshoor. B.. Nicolleau. F. C. G. A.. Beck. S. B. M.. The fractal flow conditioner for orifice plate flow meters. Flow Measurement and Instrumentation. June 2011. 22. 3. 208–214. 10.1016/j.flowmeasinst.2011.02.003.
- Verbeek. A. A.. Bouten. T. W. F. M.. Stoffels. G. G. M.. Geurts. B. J.. van der Meer. T. H.. Fractal turbulence enhancing low-swirl combustion. Combustion and Flame. January 2015. 162. 1. 129–143. 10.1016/j.combustflame.2014.07.003.
- Goh. K. H. H.. Geipel. P.. Lindstedt. R. P.. Lean premixed opposed jet flames in fractal grid generated multiscale turbulence. Combustion and Flame. September 2014. 161. 9. 2419–2434. 10.1016/j.combustflame.2014.03.010. 10044/1/26010. 93650086 . free.
- Vassilicos. J. C.. Dissipation in Turbulent Flows. Annual Review of Fluid Mechanics. 47. 1. 2015. 95–114. 10.1146/annurev-fluid-010814-014637. 2015AnRFM..47...95V. free.
- Castro. Ian P.. 2016. Dissipative distinctions. Journal of Fluid Mechanics. 788. 1–4. 10.1017/jfm.2015.630. 0022-1120. 2016JFM...788....1C. free.