In modular arithmetic, the integers coprime (relatively prime) to n from the set
\{0,1,...,n-1\}
This group, usually denoted
(Z/nZ) x
|(Z/nZ) x |=\varphi(n).
It is a straightforward exercise to show that, under multiplication, the set of congruence classes modulo n that are coprime to n satisfy the axioms for an abelian group.
Indeed, a is coprime to n if and only if . Integers in the same congruence class satisfy ; hence one is coprime to n if and only if the other is. Thus the notion of congruence classes modulo n that are coprime to n is well-defined.
Since and implies, the set of classes coprime to n is closed under multiplication.
Integer multiplication respects the congruence classes, that is, and implies .This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity.
Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying .It exists precisely when a is coprime to n, because in that case and by Bézout's lemma there are integers x and y satisfying . Notice that the equation implies that x is coprime to n, so the multiplicative inverse belongs to the group.
The set of (congruence classes of) integers modulo n with the operations of addition and multiplication is a ring.It is denoted
Z/nZ
Z/(n)
nZ
(n)
Zn
The multiplicative group of integers modulo n, which is the group of units in this ring, may be written as (depending on the author)
(Z/nZ) x ,
(Z/nZ)*,
U(Z/nZ),
E(Z/nZ)
* | |
Z | |
n |
(Z/nZ) x .
The notation
Cn
Z/nZ
Zn
(Z/pZ) x
Z/(p-1)Z
The order of the multiplicative group of integers modulo n is the number of integers in
\{0,1,...,n-1\}
|(Z/nZ) x |=\varphi(n)
\varphi(p)=p-1
See main article: article and primitive root modulo n. The group
(Z/nZ) x
This means that for these n:
(Z/nZ) x \congC\varphi(n),
\varphi(pk)=\varphi(2pk)=pk-pk-1.
By definition, the group is cyclic if and only if it has a generator g (a generating set of size one), that is, the powers
g0,g1,g2,...,
\varphi(n)
g0,...,g\varphi(n)-1
(Z/nZ) x
\varphi(\varphi(n))
Modulo 1 any two integers are congruent, i.e., there is only one congruence class, [0], coprime to 1. Therefore,
(Z/1Z) x \congC1
Modulo 2 there is only one coprime congruence class, [1], so
(Z/2Z) x \congC1
Modulo 4 there are two coprime congruence classes, [1] and [3], so
(Z/4Z) x \congC2,
Modulo 8 there are four coprime congruence classes, [1], [3], [5] and [7]. The square of each of these is 1, so
(Z/8Z) x \congC2 x C2,
Modulo 16 there are eight coprime congruence classes [1], [3], [5], [7], [9], [11], [13] and [15].
\{\pm1,\pm7\}\congC2 x C2,
(Z/16Z) x
\{1,3,9,11\}
\{1,5,9,13\}.
(Z/16Z) x \congC2 x C4.
The pattern shown by 8 and 16 holds for higher powers 2k, :
\{\pm1,2k-1\pm1\}\congC2 x C2,
(Z/2kZ) x
(Z/2kZ) x \congC2 x
C 2k-2 .
By the fundamental theorem of finite abelian groups, the group
(Z/nZ) x
More specifically, the Chinese remainder theorem[2] says that if
k1 | |
n=p | |
1 |
k2 | |
p | |
2 |
k3 | |
p | |
3 |
...,
Z/nZ
Z/nZ\cong
k1 | |
Z/{p | |
1 |
Similarly, the group of units
(Z/nZ) x
(Z/nZ) x \cong
k1 | |
(Z/{p | |
1 |
For each odd prime power
pk
(Z/{pk
\varphi(pk)=pk-pk-1
(Z/{2k
The order of the group
\varphi(n)
λ(n)
λ(n)
aλ(n)\equiv1\pmodn
\varphi(n)
If n is composite, there exists a proper subgroup of
x | |
Z | |
n |
xn-1=1
x\in
x | |
Z | |
p |
2341-1\equiv1\mod341
x | |
Z | |
341 |
The smallest example with a nontrivial subgroup of false witnesses is . There are 6 residues coprime to 9: 1, 2, 4, 5, 7, 8. Since 8 is congruent to, it follows that 88 is congruent to 1 modulo 9. So 1 and 8 are false positives for the "primality" of 9 (since 9 is not actually prime). These are in fact the only ones, so the subgroup is the subgroup of false witnesses. The same argument shows that is a "false witness" for any odd composite n.
For n = 91 (= 7 × 13), there are
\varphi(91)=72
n = 561 (= 3 × 11 × 17) is a Carmichael number, thus s560 is congruent to 1 modulo 561 for any integer s coprime to 561. The subgroup of false witnesses is, in this case, not proper; it is the entire group of multiplicative units modulo 561, which consists of 320 residues.
This table shows the cyclic decomposition of
(Z/nZ) x
\displaystyle\begin{align}(Z/35Z) x &\cong(Z/5Z) x x (Z/7Z) x \congC4 x C6\congC4 x C2 x C3\congC2 x C12\cong(Z/4Z) x x (Z/13Z) x \ &\cong(Z/52Z) x \end{align}
(but
\not\congC24\congC8 x C3
For example, take
(Z/20Z) x
\varphi(20)=8
λ(20)=4
(Z/20Z) x
Smallest primitive root mod n are (0 if no root exists)
0, 1, 2, 3, 2, 5, 3, 0, 2, 3, 2, 0, 2, 3, 0, 0, 3, 5, 2, 0, 0, 7, 5, 0, 2, 7, 2, 0, 2, 0, 3, 0, 0, 3, 0, 0, 2, 3, 0, 0, 6, 0, 3, 0, 0, 5, 5, 0, 3, 3, 0, 0, 2, 5, 0, 0, 0, 3, 2, 0, 2, 3, 0, 0, 0, 0, 2, 0, 0, 0, 7, 0, 5, 5, 0, 0, 0, 0, 3, 0, 2, 7, 2, 0, 0, 3, 0, 0, 3, 0, ...
Numbers of the elements in a minimal generating set of mod n are
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 2, 2, 1, 1, 3, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 3, 1, 1, 1, 3, 2, 1, 2, 3, 1, 2, ...
n | (Z/nZ) x | \varphi(n) | λ(n) | Generating set | n | (Z/nZ) x | \varphi(n) | λ(n) | Generating set | n | (Z/nZ) x | \varphi(n) | λ(n) | Generating set | n | (Z/nZ) x | \varphi(n) | λ(n) | Generating set | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | C1 | 1 | 1 | 0 ! 33 | C2×C10 | 20 | 10 | 2, 10 ! 65 | C4×C12 | 48 | 12 | 2, 12 ! 97 | C96 | 96 | 96 | 5 | ||||||
2 | C1 | 1 | 1 | 1 ! 34 | C16 | 16 | 16 | 3 ! 66 | C2×C10 | 20 | 10 | 5, 7 ! 98 | C42 | 42 | 42 | 3 | ||||||
3 | C2 | 2 | 2 | 2 ! 35 | C2×C12 | 24 | 12 | 2, 6 ! 67 | C66 | 66 | 66 | 2 ! 99 | C2×C30 | 60 | 30 | 2, 5 | ||||||
4 | C2 | 2 | 2 | 3 ! 36 | C2×C6 | 12 | 6 | 5, 19 ! 68 | C2×C16 | 32 | 16 | 3, 67 ! 100 | C2×C20 | 40 | 20 | 3, 99 | ||||||
5 | C4 | 4 | 4 | 2 ! 37 | C36 | 36 | 36 | 2 ! 69 | C2×C22 | 44 | 22 | 2, 68 ! 101 | C100 | 100 | 100 | 2 | ||||||
6 | C2 | 2 | 2 | 5 ! 38 | C18 | 18 | 18 | 3 ! 70 | C2×C12 | 24 | 12 | 3, 69 ! 102 | C2×C16 | 32 | 16 | 5, 101 | ||||||
7 | C6 | 6 | 6 | 3 ! 39 | C2×C12 | 24 | 12 | 2, 38 ! 71 | C70 | 70 | 70 | 7 ! 103 | C102 | 102 | 102 | 5 | ||||||
8 | C2×C2 | 4 | 2 | 3, 5 ! 40 | C2×C2×C4 | 16 | 4 | 3, 11, 39 ! 72 | C2×C2×C6 | 24 | 6 | 5, 17, 19 ! 104 | C2×C2×C12 | 48 | 12 | 3, 5, 103 | ||||||
9 | C6 | 6 | 6 | 2 ! 41 | C40 | 40 | 40 | 6 ! 73 | C72 | 72 | 72 | 5 ! 105 | C2×C2×C12 | 48 | 12 | 2, 29, 41 | ||||||
10 | C4 | 4 | 4 | 3 ! 42 | C2×C6 | 12 | 6 | 5, 13 ! 74 | C36 | 36 | 36 | 5 ! 106 | C52 | 52 | 52 | 3 | ||||||
11 | C10 | 10 | 10 | 2 ! 43 | C42 | 42 | 42 | 3 ! 75 | C2×C20 | 40 | 20 | 2, 74 ! 107 | C106 | 106 | 106 | 2 | ||||||
12 | C2×C2 | 4 | 2 | 5, 7 ! 44 | C2×C10 | 20 | 10 | 3, 43 ! 76 | C2×C18 | 36 | 18 | 3, 37 ! 108 | C2×C18 | 36 | 18 | 5, 107 | ||||||
13 | C12 | 12 | 12 | 2 ! 45 | C2×C12 | 24 | 12 | 2, 44 ! 77 | C2×C30 | 60 | 30 | 2, 76 ! 109 | C108 | 108 | 108 | 6 | ||||||
14 | C6 | 6 | 6 | 3 ! 46 | C22 | 22 | 22 | 5 ! 78 | C2×C12 | 24 | 12 | 5, 7 ! 110 | C2×C20 | 40 | 20 | 3, 109 | ||||||
15 | C2×C4 | 8 | 4 | 2, 14 ! 47 | C46 | 46 | 46 | 5 ! 79 | C78 | 78 | 78 | 3 ! 111 | C2×C36 | 72 | 36 | 2, 110 | ||||||
16 | C2×C4 | 8 | 4 | 3, 15 ! 48 | C2×C2×C4 | 16 | 4 | 5, 7, 47 ! 80 | C2×C4×C4 | 32 | 4 | 3, 7, 79 ! 112 | C2×C2×C12 | 48 | 12 | 3, 5, 111 | ||||||
17 | C16 | 16 | 16 | 3 ! 49 | C42 | 42 | 42 | 3 ! 81 | C54 | 54 | 54 | 2 ! 113 | C112 | 112 | 112 | 3 | ||||||
18 | C6 | 6 | 6 | 5 ! 50 | C20 | 20 | 20 | 3 ! 82 | C40 | 40 | 40 | 7 ! 114 | C2×C18 | 36 | 18 | 5, 37 | ||||||
19 | C18 | 18 | 18 | 2 ! 51 | C2×C16 | 32 | 16 | 5, 50 ! 83 | C82 | 82 | 82 | 2 ! 115 | C2×C44 | 88 | 44 | 2, 114 | ||||||
20 | C2×C4 | 8 | 4 | 3, 19 ! 52 | C2×C12 | 24 | 12 | 7, 51 ! 84 | C2×C2×C6 | 24 | 6 | 5, 11, 13 ! 116 | C2×C28 | 56 | 28 | 3, 115 | ||||||
21 | C2×C6 | 12 | 6 | 2, 20 ! 53 | C52 | 52 | 52 | 2 ! 85 | C4×C16 | 64 | 16 | 2, 3 ! 117 | C6×C12 | 72 | 12 | 2, 17 | ||||||
22 | C10 | 10 | 10 | 7 ! 54 | C18 | 18 | 18 | 5 ! 86 | C42 | 42 | 42 | 3 ! 118 | C58 | 58 | 58 | 11 | ||||||
23 | C22 | 22 | 22 | 5 ! 55 | C2×C20 | 40 | 20 | 2, 21 ! 87 | C2×C28 | 56 | 28 | 2, 86 ! 119 | C2×C48 | 96 | 48 | 3, 118 | ||||||
24 | C2×C2×C2 | 8 | 2 | 5, 7, 13 ! 56 | C2×C2×C6 | 24 | 6 | 3, 13, 29 ! 88 | C2×C2×C10 | 40 | 10 | 3, 5, 7 ! 120 | C2×C2×C2×C4 | 32 | 4 | 7, 11, 19, 29 | ||||||
25 | C20 | 20 | 20 | 2 ! 57 | C2×C18 | 36 | 18 | 2, 20 ! 89 | C88 | 88 | 88 | 3 ! 121 | C110 | 110 | 110 | 2 | ||||||
26 | C12 | 12 | 12 | 7 ! 58 | C28 | 28 | 28 | 3 ! 90 | C2×C12 | 24 | 12 | 7, 11 ! 122 | C60 | 60 | 60 | 7 | ||||||
27 | C18 | 18 | 18 | 2 ! 59 | C58 | 58 | 58 | 2 ! 91 | C6×C12 | 72 | 12 | 2, 3 ! 123 | C2×C40 | 80 | 40 | 7, 83 | ||||||
28 | C2×C6 | 12 | 6 | 3, 13 ! 60 | C2×C2×C4 | 16 | 4 | 7, 11, 19 ! 92 | C2×C22 | 44 | 22 | 3, 91 ! 124 | C2×C30 | 60 | 30 | 3, 61 | ||||||
29 | C28 | 28 | 28 | 2 ! 61 | C60 | 60 | 60 | 2 ! 93 | C2×C30 | 60 | 30 | 11, 61 ! 125 | C100 | 100 | 100 | 2 | ||||||
30 | C2×C4 | 8 | 4 | 7, 11 ! 62 | C30 | 30 | 30 | 3 ! 94 | C46 | 46 | 46 | 5 ! 126 | C6×C6 | 36 | 6 | 5, 13 | ||||||
31 | C30 | 30 | 30 | 3 ! 63 | C6×C6 | 36 | 6 | 2, 5 ! 95 | C2×C36 | 72 | 36 | 2, 94 ! 127 | C126 | 126 | 126 | 3 | ||||||
32 | C2×C8 | 16 | 8 | 3, 31 ! 64 | C2×C16 | 32 | 16 | 3, 63 ! 96 | C2×C2×C8 | 32 | 8 | 5, 17, 31 ! 128 | C2×C32 | 64 | 32 | 3, 127 |
The Disquisitiones Arithmeticae has been translated from Gauss's Ciceronian Latin into English and German. The German edition includes all of his papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the Gauss sum, the investigations into biquadratic reciprocity, and unpublished notes.