V
K
f\colonVk\toK
that is separately
K
k
A multilinear
k
V
\R
\boldsymbol{k}
l{T}k(V)
l{L}k(V)
Given a
k
f\inl{T}k(V)
\ell
g\inl{T}\ell(V)
f ⊗ g\inl{T}k+\ell(V)
(f ⊗ g)(v1,\ldots,vk,vk+1,\ldots,vk+\ell)=f(v1,\ldots,vk)g(vk+1,\ldots,vk+\ell),
for all
v1,\ldots,vk+\ell\inV
f ⊗ (ag1+bg2)=a(f ⊗ g1)+b(f ⊗ g2)
(af1+bf2) ⊗ g=a(f1 ⊗ g)+b(f2 ⊗ g),
and
(f ⊗ g) ⊗ h=f ⊗ (g ⊗ h).
If
(v1,\ldots,vn)
n
V
(\phi1,\ldots,\phin)
V*=l{T}1(V)
i1 | |
\phi |
ik | |
⊗ … ⊗ \phi |
1\lei1,\ldots,ik\len
l{T}k(V)
l{T}k(V)
nk
See main article: Bilinear form.
If
k=2
f:V x V\toK
See main article: Alternating multilinear map.
An important class of multilinear forms are the alternating multilinear forms, which have the additional property that[2]
f(x\sigma(1),\ldots,x\sigma(k))=sgn(\sigma)f(x1,\ldots,xk),
where
\sigma:Nk\toNk
sgn(\sigma)
\sigma(p)=q,\sigma(q)=p
\sigma(i)=i,1\lei\lek,i ≠ p,q
f(x1,\ldots,xp,\ldots,xq,\ldots,xk)=-f(x1,\ldots,xq,\ldots,xp,\ldots,xk).
K
xp=xq=x
f(x1,\ldots,x,\ldots,x,\ldots,xk)=0
\operatorname{char}(K) ≠ 2
An alternating multilinear
k
V
\R
\boldsymbol{k}
\boldsymbol{k}
l{T}k(V)
l{A}k(V)
V*
V
\R
l{A}1(V)=l{T}1(V)=V*
l{A}0(V)=l{T}0(V)=\R
The determinant on
n x n
n
The tensor product of alternating multilinear forms is, in general, no longer alternating. However, by summing over all permutations of the tensor product, taking into account the parity of each term, the exterior product (
\wedge
f\inl{A}k(V)
g\inl{A}\ell(V)
f\wedgeg\inl{A}k+\ell(V)
(f\wedgeg)(v1,\ldots,vk+\ell)=
1 | |
k!\ell! |
\sum | |
\sigma\inSk+\ell |
(sgn(\sigma))f(v\sigma(1),\ldots,v\sigma(k))g(v\sigma(k+1),\ldots,v\sigma(k+\ell)),
where the sum is taken over the set of all permutations over
k+\ell
Sk+\ell
f\inl{A}k(V)
g\inl{A}\ell(V)
f\wedgeg=(-1)k\ellg\wedgef
Given a basis
(v1,\ldots,vn)
V
(\phi1,\ldots,\phin)
V*=l{A}1(V)
i1 | |
\phi |
ik | |
\wedge … \wedge\phi |
1\leqi1< … <ik\leqn
l{A}k(V)
l{A}k(V)
V
See main article: Differential form.
Differential forms are mathematical objects constructed via tangent spaces and multilinear forms that behave, in many ways, like differentials in the classical sense. Though conceptually and computationally useful, differentials are founded on ill-defined notions of infinitesimal quantities developed early in the history of calculus. Differential forms provide a mathematically rigorous and precise framework to modernize this long-standing idea. Differential forms are especially useful in multivariable calculus (analysis) and differential geometry because they possess transformation properties that allow them be integrated on curves, surfaces, and their higher-dimensional analogues (differentiable manifolds). One far-reaching application is the modern statement of Stokes' theorem, a sweeping generalization of the fundamental theorem of calculus to higher dimensions.
The synopsis below is primarily based on Spivak (1965)[5] and Tu (2011).
To define differential forms on open subsets
U\subset\Rn
\Rn
p
n | |
T | |
p\R |
n | |
\R | |
p |
n | |
\R | |
p |
vp
v\in\Rn
p\in\Rn
vp+wp:=(v+w)p
a ⋅ (vp):=(a ⋅ v)p
(e1,\ldots,en)
\Rn
((e1)p,\ldots,(en)p)
n | |
\R | |
p |
n | |
\R | |
p |
\Rn
p
\Rn
p\in\Rn
\Rn
\Rn
A differential
\boldsymbol{k}
U\subset\Rn
\omega
p\inU
k
\Rn
p
k(\R | |
\omega | |
p:=\omega(p)\inl{A} |
n | |
p) |
k
k
k
U
\Omegak(U)
\omega
k
\omega\in\Omegak(U)
U
f\inC0(U)=\Omega0(U)
We first construct differential 1-forms from 0-forms and deduce some of their basic properties. To simplify the discussion below, we will only consider smooth differential forms constructed from smooth (
Cinfty
f:\Rn\to\R
df
U
p\inU
n | |
v | |
p |
(df)p(vp):=Df|p(v)
n\to\R | |
Df| | |
p:\R |
f
p
\pii:\Rn\to\R
x\mapstoxi
xi
x\in\Rn
d\pii
dxi
n | |
v | |
p |
(v1,\ldots,vn)
df
i | |
dx | |
p(v |
i | |
p)=v |
i | |
dx | |
p((e |
j)p)=\delta
i | |
j |
i | |
\delta | |
j |
n | |
\R | |
p |
n | |
(dx | |
p) |
l{A}1(\R
* | |
p) |
\omega
U
\omega
ai:U\to\R
df
n | |
df=\sum | |
i=1 |
Dif dxi={\partialf\over\partialx1}dx1+ … +{\partialf\over\partialxn}dxn.
[''Comments on'' ''notation:'' In this article, we follow the convention from [[tensor calculus]] and differential geometry in which multivectors and multicovectors are written with lower and upper indices, respectively. Since differential forms are multicovector fields, upper indices are employed to index them. The opposite rule applies to the components of multivectors and multicovectors, which instead are written with upper and lower indices, respectively. For instance, we represent the standard coordinates of vector
v\in\Rn
(v1,\ldots,vn)
(e1,\ldots,en)
The exterior product (
\wedge
d
k
\ell
(k+\ell)
k
(k+1)
\wedge:\Omegak(U) x \Omega\ell(U)\to\Omegak+\ell(U)
More concretely, if
\omega=a | |
i1\ldotsik |
i1 | |
dx |
\wedge … \wedge
ik | |
dx |
η=a | |
j1\ldotsi\ell |
j1 | |
dx |
\wedge … \wedge
j\ell | |
dx |
\omega\wedgeη=a | |
i1\ldotsik |
a | |
j1\ldotsj\ell |
i1 | |
dx |
\wedge … \wedge
ik | |
dx |
\wedge
j1 | |
dx |
\wedge … \wedge
j\ell | |
dx |
.
Furthermore, for any set of indices
\{\alpha1\ldots,\alpham\}
\alpha1 | |
dx |
\wedge … \wedge
\alphap | |
dx |
\wedge … \wedge
\alphaq | |
dx |
\wedge … \wedge
\alpham | |
dx |
=
\alpha1 | |
-dx |
\wedge … \wedge
\alphaq | |
dx |
\wedge … \wedge
\alphap | |
dx |
\wedge … \wedge
\alpham | |
dx |
.
If
I=\{i1,\ldots,ik\}
J=\{j1,\ldots,j\ell\}
I\capJ=\varnothing
\omega\wedgeη
dx\alpha\wedgedx\alpha=0
I\capJ ≠ \varnothing
\omega\wedgeη=0
\omega
η
The collection of the exterior products of basic 1-forms
i1 | |
\{dx |
\wedge … \wedge
ik | |
dx |
\mid1\leqi1< … <ik\leqn\}
\omega\in\Omegak(U)
\omega=\sum | |
i1< … <ik |
a | |
i1\ldotsik |
i1 | |
dx |
\wedge … \wedge
ik | |
dx |
, (*)
where
a | |
i1\ldotsik |
:U\to\R
\{i1,\ldots,ik\}
\omega
In the previous section, the 1-form
df
f
d:\Omegak(U)\to\Omegak+1(U)
k\geq1
k
\omega
(k+1)
d\omega
d\omega:=\sum | |
i1<\ldots<ik |
da | |
i1\ldotsik |
\wedge
i1 | |
dx |
\wedge … \wedge
ik | |
dx |
.
A property of
d
\omega
d2\omega=d(d\omega)\equiv0
d
C2
To integrate a differential form over a parameterized domain, we first need to introduce the notion of the pullback of a differential form. Roughly speaking, when a differential form is integrated, applying the pullback transforms it in a way that correctly accounts for a change-of-coordinates.
Given a differentiable function
f:\Rn\to\Rm
k
η\in\Omegak(\Rm)
f*η\in\Omegak(\Rn)
η
f
k
*η) | |
(f | |
p(v |
1p,\ldots,vkp):=ηf(p)(f*(v1p),\ldots,f*(vkp)),
for
v1p,\ldots,vkp
n | |
\in\R | |
p |
m | |
f | |
f(p) |
vp\mapsto(Df|p(v))f(p)
If
\omega=fdx1\wedge … \wedgedxn
n
\Rn
\omega\in\Omegan(\Rn)
n
f
\int | |
[0,1]n |
\omega=
\int | |
[0,1]n |
fdx1\wedge … \wedgedxn:=
1 | |
\int | |
0 |
fdx1 … dxn.
Next, we consider a domain of integration parameterized by a differentiable function
c:[0,1]n\toA\subset\Rm
\omega\in\Omegan(A)
c
A
\intc\omega
:=\int | |
[0,1]n |
c*\omega.
To integrate over more general domains, we define an
\boldsymbol{n}
n
\intC\omega:=\sumini\int
ci |
\omega.
An appropriate definition of the
(n-1)
\partialC
C
\Rm
IfUsing more sophisticated machinery (e.g., germs and derivations), the tangent spaceis a smooth\omega
-form on an open set(n-1)
andA\subset\Rm
is a smoothC
-chain inn
, thenA
.\intCd\omega=\int\partial\omega
TpM
M
\Rm
\omega\in\Omegak(M)
\omega:p\inM\mapsto\omegap\in
k(T | |
l{A} | |
pM) |
l{T}k(V)
V
l{T}k(V)
V
. An Introduction to Manifolds. limited. Loring W. Tu. Springer. 2011. 978-1-4419-7399-3. 2nd . 22–23.
. Finite-Dimensional Vector Spaces. Paul R. Halmos. Van Nostrand. 1958. 0-387-90093-4. 2nd . 50.
\Omegak(V)
k
V
k
V
\Omegak(V)
. Calculus on Manifolds. Michael Spivak. W. A. Benjamin, Inc.. 1965. 0805390219 . 75–146.
\deltaij=\delta(i,j)
i | |
\delta | |
j |
C
\partialC