The Mpemba effect is the name given to the observation that a liquid (typically water) which is initially hot can freeze faster than the same liquid which begins cold, under otherwise similar conditions. There is disagreement about its theoretical basis and the parameters required to produce the effect.[1] [2]
The Mpemba effect is named after Tanzanian scientist Erasto Bartholomeo Mpemba, who described it in 1963 as a secondary school student. The initial discovery and observations of the effect originate in ancient times; Aristotle said that it was common knowledge.[3]
The phenomenon, when taken to mean "hot water freezes faster than cold", is difficult to reproduce or confirm because it is ill-defined. Monwhea Jeng proposed a more precise wording: "There exists a set of initial parameters, and a pair of temperatures, such that given two bodies of water identical in these parameters, and differing only in initial uniform temperatures, the hot one will freeze sooner."[4]
Even with Jeng's definition, it is not clear whether "freezing" refers to the point at which water forms a visible surface layer of ice, the point at which the entire volume of water becomes a solid block of ice, or when the water reaches 0C. Jeng's definition suggests simple ways in which the effect might be observed, such as if a warmer temperature melts the frost on a cooling surface, thereby increasing thermal conductivity between the cooling surface and the water container. Alternatively, the Mpemba effect may not be evident in situations and under circumstances that at first seem to qualify.
Various effects of heat on the freezing of water were described by ancient scientists, including Aristotle: "The fact that the water has previously been warmed contributes to its freezing quickly: for so it cools sooner. Hence many people, when they want to cool water quickly, begin by putting it in the sun."[5] Aristotle's explanation involved antiperistasis: "...the supposed increase in the intensity of a quality as a result of being surrounded by its contrary quality."
Francis Bacon noted that "slightly tepid water freezes more easily than that which is utterly cold."[6] René Descartes wrote in his Discourse on the Method, relating the phenomenon to his vortex theory: "One can see by experience that water that has been kept on a fire for a long time freezes faster than other, the reason being that those of its particles that are least able to stop bending evaporate while the water is being heated."[7]
Scottish scientist Joseph Black investigated a special case of the phenomenon by comparing previously boiled with unboiled water;[8] he found that the previously boiled water froze more quickly. Evaporation was controlled for. He discussed the influence of stirring on the results of the experiment, noting that stirring the unboiled water led to it freezing at the same time as the previously boiled water, and also noted that stirring the very-cold unboiled water led to immediate freezing. Joseph Black then discussed Daniel Gabriel Fahrenheit's description of supercooling of water, arguing that the previously boiled water could not be as readily supercooled.
The effect is named after Tanzanian scientist Erasto Mpemba. He described it in 1963 in Form 3 of Magamba Secondary School, Tanganyika; when freezing a hot ice cream mixture in a cookery class, he noticed that it froze before a cold mixture. He later became a student at Mkwawa Secondary (formerly High) School in Iringa. The headmaster invited Dr. Denis Osborne from the University College in Dar es Salaam to give a lecture on physics. After the lecture, Mpemba asked him, "If you take two similar containers with equal volumes of water, one at and the other at, and put them into a freezer, the one that started at freezes first. Why?" Mpemba was at first ridiculed by both his classmates and his teacher. After initial consternation, however, Osborne experimented on the issue back at his workplace and confirmed Mpemba's finding. They published the results together in 1969, while Mpemba was studying at the College of African Wildlife Management.[9]
Mpemba and Osborne described placing 70ml samples of water in 100ml beakers in the icebox of a domestic refrigerator on a sheet of polystyrene foam. They showed the time for freezing to start was longest with an initial temperature of and that it was much less at around . They ruled out loss of liquid volume by evaporation and the effect of dissolved air as significant factors. In their setup, most heat loss was found to be from the liquid surface.
David Auerbach has described an effect that he observed in samples in glass beakers placed into a liquid cooling bath. In all cases the water supercooled, reaching a temperature of typically -6C-18C before spontaneously freezing. Considerable random variation was observed in the time required for spontaneous freezing to start and in some cases this resulted in the water which started off hotter (partially) freezing first.[10]
In 2016, Burridge and Linden defined the criterion as the time to reach 0°C, carried out experiments, and reviewed published work to date. They noted that the large difference originally claimed had not been replicated, and that studies showing a small effect could be influenced by variations in the positioning of thermometers: "We conclude, somewhat sadly, that there is no evidence to support meaningful observations of the Mpemba effect."
In controlled experiments, the effect can entirely be explained by undercooling and the time of freezing was determined by what container was used.[11] Experimental results confirming the Mpemba effect have been criticized for being flawed, not accounting for dissolved solids and gasses, and other confounding factors.[12]
Philip Ball, a reviewer for Physics World wrote: "Even if the Mpemba effect is real — if hot water can sometimes freeze more quickly than cold — it is not clear whether the explanation would be trivial or illuminating." Ball wrote that investigations of the phenomenon need to control a large number of initial parameters (including type and initial temperature of the water, dissolved gas and other impurities, and size, shape and material of the container, and temperature of the refrigerator) and need to settle on a particular method of establishing the time of freezing, all of which might affect the presence or absence of the Mpemba effect. The required vast multidimensional array of experiments might explain why the effect is not yet understood.[13]
New Scientist recommends starting the experiment with containers at 35C5C, respectively, to maximize the effect.[14]
While the actual occurrence of the Mpemba effect is disputed, several theoretical explanations could explain its occurrence.
In 2017, two research groups independently and simultaneously found a theoretical Mpemba effect and also predicted a new "inverse" Mpemba effect in which heating a cooled, far-from-equilibrium system takes less time than another system that is initially closer to equilibrium. Zhiyue Lu and Oren Raz yielded a general criterion based on Markovian statistical mechanics, predicting the appearance of the inverse Mpemba effect in the Ising model and diffusion dynamics.[15] Antonio Lasanta and co-authors also predicted the direct and inverse Mpemba effects for a granular gas in a far-from-equilibrium initial state.[16] Lasanta's paper also suggested that a very generic mechanism leading to both Mpemba effects is due to a particle velocity distribution function that significantly deviates from the Maxwell–Boltzmann distribution..
James Brownridge, a physicist at Binghamton University, has said that supercooling is involved.[17] [11] Several molecular dynamics simulations have also supported that changes in hydrogen bonding during supercooling take a major role in the process.[18] In 2017, Yunwen Tao and co-authors suggested that the vast diversity and peculiar occurrence of different hydrogen bonds could contribute to the effect. They argued that the number of strong hydrogen bonds increases as temperature is elevated, and that the existence of the small strongly bonded clusters facilitates in turn the nucleation of hexagonal ice when warm water is rapidly cooled down. The authors used vibrational spectroscopy and modelling with density functional theory-optimized water clusters.
The following explanations have also been proposed:
Other phenomena in which large effects may be achieved faster than small effects are:
In 2017, the possibility of a "strong Mpemba effect" where exponentially faster cooling can occur in a system at particular initial temperatures was predicted by Klich, Raz, Hirschberg and Vucelja [26] . In 2020 the strong Mpemba effect was demonstrated experimentally by Avinash Kumar and John Boechhoefer in a colloidal system [27] .
Notes
Experimental results confirming the Mpemba effect have been criticized for being flawed, not accounting for dissolved solids and gasses, and other confounding factors.