Motzkin–Taussky theorem explained

The Motzkin–Taussky theorem is a result from operator and matrix theory about the representation of a sum of two bounded, linear operators (resp. matrices). The theorem was proven by Theodore Motzkin and Olga Taussky-Todd.[1]

The theorem is used in perturbation theory, where e.g. operators of the form

T+xT1

are examined.

Statement

Let

T=\alphaA+\betaB

are diagonalizable for all

\alpha,\beta\in\C

. Then all eigenvalues of

T

are of the form

λT=\alphaλA+\betaλB

(i.e. they are linear in

\alpha

und

\beta

) and

λA,λB

are independent of the choice of

\alpha,\beta

.[2]

Here

λA

stands for an eigenvalue of

A

.

Comments

\alpha,\beta

property L.[3]

Bibliography

Notes and References

  1. Motzkin . T. S. . Taussky . Olga . 1952 . Pairs of Matrices with Property L . Transactions of the American Mathematical Society . 73 . 1 . 108–114 . 10.2307/1990825 . 1990825 . 16589359 . 1063886 .
  2. Book: Kato, Tosio . Perturbation Theory for Linear Operators . Classics in Mathematics . Springer . 1995 . 132 . 978-3-540-58661-6 . 2 . Berlin, Heidelberg . 86 . en . 10.1007/978-3-642-66282-9.
  3. Motzkin . T. S. . Taussky . Olga . 1955 . Pairs of Matrices With Property L. II . Transactions of the American Mathematical Society . 80 . 2 . 387–401 . 10.2307/1992996 . 1992996 . 0002-9947.