Morse theory explained
In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differentiable function on a manifold will reflect the topology quite directly. Morse theory allows one to find CW structures and handle decompositions on manifolds and to obtain substantial information about their homology.
Before Morse, Arthur Cayley and James Clerk Maxwell had developed some of the ideas of Morse theory in the context of topography. Morse originally applied his theory to geodesics (critical points of the energy functional on the space of paths). These techniques were used in Raoul Bott's proof of his periodicity theorem.
The analogue of Morse theory for complex manifolds is Picard–Lefschetz theory.
Basic concepts
To illustrate, consider a mountainous landscape surface
(more generally, a
manifold). If
is the
function
giving the elevation of each point, then the inverse image of a point in
is a
contour line (more generally, a
level set). Each connected component of a contour line is either a point, a simple closed curve, or a closed curve with a
double point. Contour lines may also have points of higher order (triple points, etc.), but these are unstable and may be removed by a slight deformation of the landscape. Double points in contour lines occur at saddle points, or passes, where the surrounding landscape curves up in one direction and down in the other.
Imagine flooding this landscape with water. When the water reaches elevation
, the underwater surface is
}\, f^(-\infty, a], the points with elevation
or below. Consider how the topology of this surface changes as the water rises. It appears unchanged except when
passes the height of a
critical point, where the
gradient of
is
(more generally, the Jacobian matrix acting as a
linear map between
tangent spaces does not have maximal
rank). In other words, the topology of
does not change except when the water either (1) starts filling a basin, (2) covers a saddle (a
mountain pass), or (3) submerges a peak.
To these three types of critical pointsbasins, passes, and peaks (i.e. minima, saddles, and maxima)one associates a number called the index, the number of independent directions in which
decreases from the point. More precisely, the index of a non-degenerate critical point
of
is the
dimension of the largest subspace of the
tangent space to
at
on which the
Hessian of
is negative definite. The indices of basins, passes, and peaks are
and
respectively.
Considering a more general surface, let
be a
torus oriented as in the picture, with
again taking a point to its height above the plane. One can again analyze how the topology of the underwater surface
changes as the water level
rises.
Starting from the bottom of the torus, let
and
be the four critical points of index
and
corresponding to the basin, two saddles, and peak, respectively. When
is less than
then
is the empty set. After
passes the level of
when
then
is a
disk, which is homotopy equivalent to a point (a 0-cell) which has been "attached" to the empty set. Next, when
exceeds the level of
and
then
is a cylinder, and is homotopy equivalent to a disk with a 1-cell attached (image at left). Once
passes the level of
and
then
is a torus with a disk removed, which is homotopy equivalent to a cylinder with a 1-cell attached (image at right). Finally, when
is greater than the critical level of
is a torus, i.e. a torus with a disk (a 2-cell) removed and re-attached.
This illustrates the following rule: the topology of
does not change except when
passes the height of a critical point; at this point, a
-cell is attached to
, where
is the index of the point. This does not address what happens when two critical points are at the same height, which can be resolved by a slight perturbation of
In the case of a landscape or a manifold
embedded in
Euclidean space, this perturbation might simply be tilting slightly, rotating the coordinate system.
One must take care to make the critical points non-degenerate. To see what can pose a problem, let
and let
Then
is a critical point of
but the topology of
does not change when
passes
The problem is that the second derivative is
that is, the
Hessian of
vanishes and the critical point is degenerate. This situation is unstable, since by slightly deforming
to
, the degenerate critical point is either removed (
) or breaks up into two non-degenerate critical points (
).
Formal development
on a
differentiable manifold
the points where the differential of
vanishes are called
critical points of
and their images under
are called critical values. If at a critical point
the matrix of second partial derivatives (the
Hessian matrix) is non-singular, then
is called a
; if the Hessian is singular then
is a
.
For the functionsfrom
to
has a critical point at the origin if
which is non-degenerate if
(that is,
is of the form
) and degenerate if
(that is,
is of the form
). A less trivial example of a degenerate critical point is the origin of the
monkey saddle.
The index of a non-degenerate critical point
of
is the dimension of the largest subspace of the
tangent space to
at
on which the Hessian is negative definite. This corresponds to the intuitive notion that the index is the number of directions in which
decreases. The degeneracy and index of a critical point are independent of the choice of the local coordinate system used, as shown by
Sylvester's Law.
Morse lemma
Let
be a non-degenerate critical point of
Then there exists a chart
\left(x1,x2,\ldots,xn\right)
in a neighborhood
of
such that
for all
and
throughout
Here
is equal to the index of
at
. As a corollary of the Morse lemma, one sees that non-degenerate critical points are
isolated. (Regarding an extension to the complex domain see Complex Morse Lemma. For a generalization, see
Morse–Palais lemma).
Fundamental theorems
A smooth real-valued function on a manifold
is a
Morse function if it has no degenerate critical points. A basic result of Morse theory says that almost all functions are Morse functions. Technically, the Morse functions form an open, dense subset of all smooth functions
in the
topology. This is sometimes expressed as "a typical function is Morse" or "a
generic function is Morse".
As indicated before, we are interested in the question of when the topology of
changes as
varies. Half of the answer to this question is given by the following theorem.
Theorem. Suppose
is a smooth real-valued function on
is
compact, and there are no critical values between
and
Then
is diffeomorphic to
and
deformation retracts onto
It is also of interest to know how the topology of
changes when
passes a critical point. The following theorem answers that question.
Theorem. Suppose
is a smooth real-valued function on
and
is a non-degenerate critical point of
of index
and that
Suppose
f-1[q-\varepsilon,q+\varepsilon]
is compact and contains no critical points besides
Then
is homotopy equivalent to
with a
-cell attached.
These results generalize and formalize the 'rule' stated in the previous section.
Using the two previous results and the fact that there exists a Morse function on any differentiable manifold, one can prove that any differentiable manifold is a CW complex with an
-cell for each critical point of index
To do this, one needs the technical fact that one can arrange to have a single critical point on each critical level, which is usually proven by using
gradient-like vector fields to rearrange the critical points.
Morse inequalities
Morse theory can be used to prove some strong results on the homology of manifolds. The number of critical points of index
of
is equal to the number of
cells in the CW structure on
obtained from "climbing"
Using the fact that the alternating sum of the ranks of the homology groups of a topological space is equal to the alternating sum of the ranks of the chain groups from which the homology is computed, then by using the cellular chain groups (see
cellular homology) it is clear that the
Euler characteristic
is equal to the sum
where
is the number of critical points of index
Also by cellular homology, the rank of the
th homology group of a CW complex
is less than or equal to the number of
-cells in
Therefore, the rank of the
th homology group, that is, the
Betti number
, is less than or equal to the number of critical points of index
of a Morse function on
These facts can be strengthened to obtain the
:
In particular, for anyone has
This gives a powerful tool to study manifold topology. Suppose on a closed manifold there exists a Morse function
with precisely
k critical points. In what way does the existence of the function
restrict
? The case
was studied by
Georges Reeb in 1952; the
Reeb sphere theorem states that
is homeomorphic to a sphere
The case
is possible only in a small number of low dimensions, and
M is homeomorphic to an
Eells–Kuiper manifold.In 1982
Edward Witten developed an analytic approach to the Morse inequalities by considering the de Rham complex for the perturbed operator
[1] [2] Application to classification of closed 2-manifolds
Morse theory has been used to classify closed 2-manifolds up to diffeomorphism. If
is oriented, then
is classified by its genus
and is diffeomorphic to a sphere with
handles: thus if
is diffeomorphic to the 2-sphere; and if
is diffeomorphic to the
connected sum of
2-tori. If
is unorientable, it is classified by a number
and is diffeomorphic to the connected sum of
real projective spaces
In particular two closed 2-manifolds are homeomorphic if and only if they are diffeomorphic.
[3] [4] Morse homology
Morse homology is a particularly easy way to understand the homology of smooth manifolds. It is defined using a generic choice of Morse function and Riemannian metric. The basic theorem is that the resulting homology is an invariant of the manifold (that is, independent of the function and metric) and isomorphic to the singular homology of the manifold; this implies that the Morse and singular Betti numbers agree and gives an immediate proof of the Morse inequalities. An infinite dimensional analog of Morse homology in symplectic geometry is known as Floer homology.
Morse–Bott theory
The notion of a Morse function can be generalized to consider functions that have nondegenerate manifolds of critical points. A is a smooth function on a manifold whose critical set is a closed submanifold and whose Hessian is non-degenerate in the normal direction. (Equivalently, the kernel of the Hessian at a critical point equals the tangent space to the critical submanifold.) A Morse function is the special case where the critical manifolds are zero-dimensional (so the Hessian at critical points is non-degenerate in every direction, that is, has no kernel).
The index is most naturally thought of as a pairwhere
is the dimension of the unstable manifold at a given point of the critical manifold, and
is equal to
plus the dimension of the critical manifold. If the Morse–Bott function is perturbed by a small function on the critical locus, the index of all critical points of the perturbed function on a critical manifold of the unperturbed function will lie between
and
Morse–Bott functions are useful because generic Morse functions are difficult to work with; the functions one can visualize, and with which one can easily calculate, typically have symmetries. They often lead to positive-dimensional critical manifolds. Raoul Bott used Morse–Bott theory in his original proof of the Bott periodicity theorem.
Round functions are examples of Morse–Bott functions, where the critical sets are (disjoint unions of) circles.
Morse homology can also be formulated for Morse–Bott functions; the differential in Morse–Bott homology is computed by a spectral sequence. Frederic Bourgeois sketched an approach in the course of his work on a Morse–Bott version of symplectic field theory, but this work was never published due to substantial analytic difficulties.
Further reading
- Bott. Raoul. Raoul Bott. 1988. Morse Theory Indomitable. Publications Mathématiques de l'IHÉS. 68. 99–114. 10.1007/bf02698544. 54005577.
- Bott. Raoul. Raoul Bott. 1982. Lectures on Morse theory, old and new. Bulletin of the American Mathematical Society. (N.S.). 7. 2. 331–358. 10.1090/s0273-0979-1982-15038-8. free.
- Cayley. Arthur. 1859. On Contour and Slope Lines. The Philosophical Magazine. 18. 120. 264–268.
- Guest. Martin. 2001. math/0104155. Morse Theory in the 1990s.
- Book: Hirsch, M.. Differential Topology. 1994. 2nd. Springer.
- Book: Matsumoto, Yukio. 2002. An Introduction to Morse Theory.
- Maxwell. James Clerk. 1870. On Hills and Dales. The Philosophical Magazine. 40. 269. 421–427.
- Book: Milnor, John. John Milnor. Morse Theory. Princeton University Press. 1963. 0-691-08008-9. A classic advanced reference in mathematics and mathematical physics.
- Book: Milnor, John. 1965. Lectures on the h-cobordism theorem.
- Book: Morse, Marston. 1934. The Calculus of Variations in the Large. American Mathematical Society Colloquium Publication. 18. New York.
- Book: Schwarz, Matthias. Morse Homology. registration. Birkhäuser. 1993. 9780817629045.
Notes and References
- Witten . Edward . Supersymmetry and Morse theory . . 17 . 1982 . 4 . 661–692 . 10.4310/jdg/1214437492 . free.
- Book: Roe, John. Elliptic Operators, Topology and Asymptotic Method . 2nd . Pitman Research Notes in Mathematics Series . 395 . Longman . 1998 . 0582325021.
- Book: Gauld, David B. . Differential Topology: an Introduction . Monographs and Textbooks in Pure and Applied Mathematics. 72 . Marcel Dekker . 1982. 0824717090 . registration .
- Book: Shastri, Anant R.. Elements of Differential Topology. CRC Press. 2011. 9781439831601.