Molecule mining explained

Molecule mining is the process of data mining, or extracting and discovering patterns, as applied to molecules. Since molecules may be represented by molecular graphs, this is strongly related to graph mining and structured data mining. The main problem is how to represent molecules while discriminating the data instances. One way to do this is chemical similarity metrics, which has a long tradition in the field of cheminformatics.

Typical approaches to calculate chemical similarities use chemical fingerprints, but this loses the underlying information about the molecule topology. Mining the molecular graphs directlyavoids this problem. So does the inverse QSAR problem which is preferable for vectorial mappings.

Coding(Moleculei,Moleculej≠i)

Kernel methods

Maximum Common Graph methods

Coding(Moleculei)

Molecular query methods

Methods based on special architectures of neural networks

See also

References

Further reading

External links

Notes and References

  1. H. Kashima, K. Tsuda, A. Inokuchi, Marginalized Kernels Between Labeled Graphs, The 20th International Conference on Machine Learning (ICML2003), 2003. PDF
  2. H. Fröhlich, J. K. Wegner, A. Zell, Optimal Assignment Kernels For Attributed Molecular Graphs, The 22nd International Conference on Machine Learning (ICML 2005), Omnipress, Madison, WI, USA, 2005, 225-232. PDF
  3. Fröhlich H., Wegner J. K., Zell A. . 2006 . Kernel Functions for Attributed Molecular Graphs - A New Similarity Based Approach To ADME Prediction in Classification and Regression . QSAR Comb. Sci. . 25 . 4 . 317–326 . 10.1002/qsar.200510135 .
  4. H. Fröhlich, J. K. Wegner, A. Zell, Assignment Kernels For Chemical Compounds, International Joint Conference on Neural Networks 2005 (IJCNN'05), 2005, 913-918. CiteSeer
  5. Mahe P., Ralaivola L., Stoven V., Vert J. . 2006 . The pharmacophore kernel for virtual screening with support vector machines . J Chem Inf Model . 46 . 5 . 2003–2014 . 10.1021/ci060138m . 16995731 . q-bio/0603006 . 2006q.bio.....3006M . 15060229 .
  6. P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret and P. Vert, J.-P. . Extensions of marginalized graph kernels . Proceedings of the 21st ICML . 2004 . 552–559 .
  7. L. Ralaivola, S. J. Swamidass, S. Hiroto and P. Baldi. Graph kernels for chemical informatics . Neural Networks . 2005 . 18 . 8 . 1093–1110 . 10.1016/j.neunet.2005.07.009. 16157471 .
  8. P. Mahé and J.-P. Vert. Graph kernels based on tree patterns for molecules . Machine Learning . 75 . 1 . 2009 . 0885-6125 . 3–35 . 10.1007/s10994-008-5086-2 . q-bio/0609024 . 5943581 .
  9. Wegner J. K., Fröhlich H., Mielenz H., Zell A. . 2006 . Data and Graph Mining in Chemical Space for ADME and Activity Data Sets . QSAR Comb. Sci. . 25 . 3 . 205–220 . 10.1002/qsar.200510009 .
  10. Rahman S. A., Bashton M., Holliday G. L., Schrader R., Thornton J. M. . 2009 . Small Molecule Subgraph Detector (SMSD) toolkit . Journal of Cheminformatics . 1 . 1 . 12 . 10.1186/1758-2946-1-12 . 20298518 . 2820491 . free .
  11. Web site: Small Molecule Subgraph Detector (SMSD).
  12. King R. D., Srinivasan A., Dehaspe L. . 2001 . Wamr: a data mining tool for chemical data . J. Comput.-Aid. Mol. Des. . 15 . 2 . 173–181 . 10.1023/A:1008171016861 . 11272703 . 2001JCAMD..15..173K . 3055046 .
  13. L. Dehaspe, H. Toivonen, King, Finding frequent substructures in chemical compounds, 4th International Conference on Knowledge Discovery and Data Mining, AAAI Press., 1998, 30-36.
  14. A. Inokuchi, T. Washio, T. Okada, H. Motoda, Applying the Apriori-based Graph Mining Method to Mutagenesis Data Analysis, Journal of Computer Aided Chemistry, 2001;, 2, 87-92.
  15. A. Inokuchi, T. Washio, K. Nishimura, H. Motoda, A Fast Algorithm for Mining Frequent Connected Subgraphs, IBM Research, Tokyo Research Laboratory, 2002.
  16. A. Clare, R. D. King, Data mining the yeast genome in a lazy functional language, Practical Aspects of Declarative Languages (PADL2003), 2003.
  17. Kuramochi M., Karypis G. . 2004 . An Efficient Algorithm for Discovering Frequent Subgraphs . IEEE Transactions on Knowledge and Data Engineering . 16 . 9. 1038–1051 . 10.1109/tkde.2004.33 . 242887 . 10.1.1.107.3913 .
  18. Deshpande M., Kuramochi M., Wale N., Karypis G. . 2005 . Frequent Substructure-Based Approaches for Classifying Chemical Compounds . IEEE Transactions on Knowledge and Data Engineering . 17 . 8. 1036–1050 . 10.1109/tkde.2005.127 . 11299/215559 . free .
  19. Helma C., Cramer T., Kramer S., de Raedt L. . 2004 . Data Mining and Machine Learning Techniques for the Identification of Mutagenicity Inducing Substructures and Structure Activity Relationships of Noncongeneric Compounds . J. Chem. Inf. Comput. Sci. . 44 . 4 . 1402–1411 . 10.1021/ci034254q . 15272848 .
  20. T. Meinl, C. Borgelt, M. R. Berthold, Discriminative Closed Fragment Mining and Perfect Extensions in MoFa, Proceedings of the Second Starting AI Researchers Symposium (STAIRS 2004), 2004.
  21. T. Meinl, C. Borgelt, M. R. Berthold, M. Philippsen, Mining Fragments with Fuzzy Chains in Molecular Databases, Second International Workshop on Mining Graphs, Trees and Sequences (MGTS2004), 2004.
  22. Book: T.. Meinl. M. R. . Berthold. 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583) . Hybrid fragment mining with MoFa and FSG . 2004. 5. 4559–4564. 10.1109/ICSMC.2004.1401250. 0-7803-8567-5. 3248671. http://www.uni-konstanz.de/bioml/bioml2/publications/Papers2004/MeBe04_mofafsg_smc.pdf.
  23. S. Nijssen, J. N. Kok. Frequent Graph Mining and its Application to Molecular Databases, Proceedings of the 2004 IEEE Conference on Systems, Man & Cybernetics (SMC2004), 2004.
  24. C. Helma, Predictive Toxicology, CRC Press, 2005.
  25. M. Wörlein, Extension and parallelization of a graph-mining-algorithm, Friedrich-Alexander-Universität, 2006. PDF
  26. K. Jahn, S. Kramer, Optimizing gSpan for Molecular Datasets, Proceedings of the Third International Workshop on Mining Graphs, Trees and Sequences (MGTS-2005), 2005.
  27. X. Yan, J. Han, gSpan: Graph-Based Substructure Pattern Mining, Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM 2002), IEEE Computer Society, 2002, 721-724.
  28. Karwath A., Raedt L. D. . 2006 . SMIREP: predicting chemical activity from SMILES . J Chem Inf Model . 46 . 6 . 2432–2444 . 10.1021/ci060159g . 17125185 . 1460089 .
  29. Ando H., Dehaspe L., Luyten W., Craenenbroeck E., Vandecasteele H., Meervelt L. . 2006 . Discovering H-Bonding Rules in Crystals with Inductive Logic Programming . Mol Pharm . 3 . 6 . 665–674 . 10.1021/mp060034z . 17140254 .
  30. Mazzatorta P., Tran L., Schilter B., Grigorov M. . 2007. Integration of Structure-Activity Relationship and Artificial Intelligence Systems To Improve in Silico Prediction of Ames Test Mutagenicity . J. Chem. Inf. Model. . 47. 1. 34–38. 10.1021/ci600411v . 17238246.
  31. Wale N., Karypis G. . Comparison of Descriptor Spaces for Chemical Compound Retrieval and Classification . ICDM . 2006 . 678–689 .
  32. A. Gago Alonso, J.E. Medina Pagola, J.A. Carrasco-Ochoa and J.F. Martínez-Trinidad Mining Connected Subgraph Mining Reducing the Number of Candidates, Proc. of ECML--PKDD, pp. 365–376, 2008.
  33. Xiaohong Wang, Jun Huan, Aaron Smalter, Gerald Lushington, Application of Kernel Functions for Accurate Similarity Search in Large Chemical Databases , BMC Bioinformatics Vol. 11 (Suppl 3):S8 2010.
  34. Baskin . I. I. . V. A. Palyulin . N. S. Zefirov . [A methodology for searching direct correlations between structures and properties of organic compounds by using computational neural networks] . . 1993 . 333 . 2 . 176–179.
  35. I. I. Baskin, V. A. Palyulin, N. S. Zefirov . A Neural Device for Searching Direct Correlations between Structures and Properties of Organic Compounds . J. Chem. Inf. Comput. Sci. . 1997 . 37 . 4 . 715–721 . 10.1021/ci940128y.
  36. D. B. Kireev . ChemNet: A Novel Neural Network Based Method for Graph/Property Mapping . J. Chem. Inf. Comput. Sci. . 1995 . 35 . 2 . 175–180 . 10.1021/ci00024a001.
  37. 10.1023/A:1008368105614 . A. M. Bianucci . Micheli . Alessio . Sperduti . Alessandro . Starita . Antonina . Application of Cascade Correlation Networks for Structures to Chemistry . Applied Intelligence . 2000 . 12 . 1–2 . 117–146. 10031212 .
  38. A. Micheli, A. Sperduti, A. Starita, A. M. Bianucci . Analysis of the Internal Representations Developed by Neural Networks for Structures Applied to Quantitative Structure-Activity Relationship Studies of Benzodiazepines . J. Chem. Inf. Comput. Sci. . 2001 . 41 . 1 . 202–218 . 10.1021/ci9903399 . 11206375. 10.1.1.137.2895 .
  39. O. Ivanciuc . Molecular Structure Encoding into Artificial Neural Networks Topology . Roumanian Chemical Quarterly Reviews . 2001 . 8 . 197–220.
  40. A. Goulon, T. Picot, A. Duprat, G. Dreyfus . Predicting activities without computing descriptors: Graph machines for QSAR . SAR and QSAR in Environmental Research . 2007 . 18 . 1–2 . 141–153 . 10.1080/10629360601054313 . 17365965. 11759797 .