Molecular engineering explained

Molecular engineering is an emerging field of study concerned with the design and testing of molecular properties, behavior and interactions in order to assemble better materials, systems, and processes for specific functions. This approach, in which observable properties of a macroscopic system are influenced by direct alteration of a molecular structure, falls into the broader category of “bottom-up” design.

Molecular engineering is highly interdisciplinary by nature, encompassing aspects of chemical engineering, materials science, bioengineering, electrical engineering, physics, mechanical engineering, and chemistry. There is also considerable overlap with nanotechnology, in that both are concerned with the behavior of materials on the scale of nanometers or smaller. Given the highly fundamental nature of molecular interactions, there are a plethora of potential application areas, limited perhaps only by one's imagination and the laws of physics. However, some of the early successes of molecular engineering have come in the fields of immunotherapy, synthetic biology, and printable electronics (see molecular engineering applications).

Molecular engineering is a dynamic and evolving field with complex target problems; breakthroughs require sophisticated and creative engineers who are conversant across disciplines. A rational engineering methodology that is based on molecular principles is in contrast to the widespread trial-and-error approaches common throughout engineering disciplines. Rather than relying on well-described but poorly-understood empirical correlations between the makeup of a system and its properties, a molecular design approach seeks to manipulate system properties directly using an understanding of their chemical and physical origins. This often gives rise to fundamentally new materials and systems, which are required to address outstanding needs in numerous fields, from energy to healthcare to electronics. Additionally, with the increased sophistication of technology, trial-and-error approaches are often costly and difficult, as it may be difficult to account for all relevant dependencies among variables in a complex system. Molecular engineering efforts may include computational tools, experimental methods, or a combination of both.

History

Molecular engineering was first mentioned in the research literature in 1956 by Arthur R. von Hippel, who defined it as "… a new mode of thinking about engineering problems. Instead of taking prefabricated materials and trying to devise engineering applications consistent with their macroscopic properties, one builds materials from their atoms and molecules for the purpose at hand."[1] This concept was echoed in Richard Feynman's seminal 1959 lecture There's Plenty of Room at the Bottom, which is widely regarded as giving birth to some of the fundamental ideas of the field of nanotechnology. In spite of the early introduction of these concepts, it was not until the mid-1980s with the publication of Engines of Creation: The Coming Era of Nanotechnology by Drexler that the modern concepts of nano and molecular-scale science began to grow in the public consciousness.

The discovery of electrically conductive properties in polyacetylene by Alan J. Heeger in 1977[2] effectively opened the field of organic electronics, which has proved foundational for many molecular engineering efforts. Design and optimization of these materials has led to a number of innovations including organic light-emitting diodes and flexible solar cells.

Applications

Molecular design has been an important element of many disciplines in academia, including bioengineering, chemical engineering, electrical engineering, materials science, mechanical engineering and chemistry. However, one of the ongoing challenges is in bringing together the critical mass of manpower amongst disciplines to span the realm from design theory to materials production, and from device design to product development. Thus, while the concept of rational engineering of technology from the bottom-up is not new, it is still far from being widely translated into R&D efforts.

Molecular engineering is used in many industries. Some applications of technologies where molecular engineering plays a critical role:

Consumer Products

Environmental Engineering

Techniques and instruments used

Molecular engineers utilize sophisticated tools and instruments to make and analyze the interactions of molecules and the surfaces of materials at the molecular and nano-scale. The complexity of molecules being introduced at the surface is increasing, and the techniques used to analyze surface characteristics at the molecular level are ever-changing and improving. Meantime, advancements in high performance computing have greatly expanded the use of computer simulation in the study of molecular scale systems.

Computational and Theoretical Approaches

Microscopy

Molecular Characterization

Spectroscopy

Surface Science

Synthetic Methods

Other Tools

Research / Education

At least three universities offer graduate degrees dedicated to molecular engineering: the University of Chicago,[18] the University of Washington,[19] and Kyoto University.[20] These programs are interdisciplinary institutes with faculty from several research areas.

The academic journal Molecular Systems Design & Engineering[21] publishes research from a wide variety of subject areas that demonstrates "a molecular design or optimisation strategy targeting specific systems functionality and performance."

See also

General topics

Notes and References

  1. von Hippel. Arthur R. 1956. Molecular Engineering. 1750067. Science. 123. 3191. 315–317. 10.1126/science.123.3191.315. 17774519. 1956Sci...123..315V.
  2. Chiang. C. K.. 1977-01-01. Electrical Conductivity in Doped Polyacetylene. Physical Review Letters. 39. 17. 1098–1101. 10.1103/PhysRevLett.39.1098. 1977PhRvL..39.1098C.
  3. Gallo. Jiri. Holinka. Martin. Moucha. Calin S.. 2014-08-11. Antibacterial Surface Treatment for Orthopaedic Implants. International Journal of Molecular Sciences. en. 15. 8. 13849–13880. 10.3390/ijms150813849. 25116685. 4159828. free .
  4. Huang. Jinhua. Su. Liang. Kowalski. Jeffrey A.. Barton. John L.. Ferrandon. Magali. Burrell. Anthony K.. Brushett. Fikile R.. Zhang. Lu. 2015-07-14. A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries. J. Mater. Chem. A. en. 3. 29. 14971–14976. 10.1039/c5ta02380g. 2050-7496.
  5. Wu. Mingyan. Xiao. Xingcheng. Vukmirovic. Nenad. Xun. Shidi. Das. Prodip K.. Song. Xiangyun. Olalde-Velasco. Paul. Wang. Dongdong. Weber. Adam Z.. 2013-07-31. Toward an Ideal Polymer Binder Design for High-Capacity Battery Anodes. Journal of the American Chemical Society. EN. 135. 32. 12048–12056. 10.1021/ja4054465. 23855781. 12715155 .
  6. Choi. Jaecheol. Kim. Kyuman. Jeong. Jiseon. Cho. Kuk Young. Ryou. Myung-Hyun. Lee. Yong Min. 2015-06-30. Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces. EN. 7. 27. 14851–14858. 10.1021/acsami.5b03364. 26075943.
  7. Tan. Shi. Ji. Ya J.. Zhang. Zhong R.. Yang. Yong. 2014-07-21. Recent Progress in Research on High-Voltage Electrolytes for Lithium-Ion Batteries. ChemPhysChem. en. 15. 10. 1956–1969. 10.1002/cphc.201402175. 25044525. 1439-7641.
  8. Zhu. Ye. Li. Yan. Bettge. Martin. Abraham. Daniel P.. 2012-01-01. Positive Electrode Passivation by LiDFOB Electrolyte Additive in High-Capacity Lithium-Ion Cells. Journal of the Electrochemical Society. en. 159. 12. A2109–A2117. 10.1149/2.083212jes. 0013-4651.
  9. Web site: New Laminar Batteries Printed Electronics World. 2007-05-18. 2016-08-06.
  10. Nokami. Toshiki. Matsuo. Takahiro. Inatomi. Yuu. Hojo. Nobuhiko. Tsukagoshi. Takafumi. Yoshizawa. Hiroshi. Shimizu. Akihiro. Kuramoto. Hiroki. Komae. Kazutomo. 2012-11-20. Polymer-Bound Pyrene-4,5,9,10-tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity. Journal of the American Chemical Society. EN. 134. 48. 19694–19700. 10.1021/ja306663g. 23130634.
  11. Liang. Yanliang. Chen. Zhihua. Jing. Yan. Rong. Yaoguang. Facchetti. Antonio. Yao. Yan. 2015-04-11. Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast Energy Storage Capability. Journal of the American Chemical Society. EN. 137. 15. 4956–4959. 10.1021/jacs.5b02290. 25826124. free.
  12. Surwade. Sumedh P.. Smirnov. Sergei N.. Vlassiouk. Ivan V.. Unocic. Raymond R.. Veith. Gabriel M.. Dai. Sheng. Mahurin. Shannon M.. Water desalination using nanoporous single-layer graphene. Nature Nanotechnology. 10. 5. 459–464. 10.1038/nnano.2015.37. 25799521. 2015NatNa..10..459S. 2015. 1185491.
  13. He. Feng. Zhao. Dongye. Paul. Chris. 2010-04-01. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones. Water Research. 44. 7. 2360–2370. 10.1016/j.watres.2009.12.041. 20106501.
  14. Web site: Better Carbon Capture Through Chemistry Chemical & Engineering News. Pelley. Janet. cen.acs.org. 2016-08-06.
  15. Black. Matthew. Trent. Amanda. Kostenko. Yulia. Lee. Joseph Saeyong. Olive. Colleen. Tirrell. Matthew. 2012-07-24. Self-Assembled Peptide Amphiphile Micelles Containing a Cytotoxic T-Cell Epitope Promote a Protective Immune Response In Vivo. Advanced Materials. en. 24. 28. 3845–3849. 10.1002/adma.201200209. 22550019. 2012AdM....24.3845B . 205244562 . 1521-4095.
  16. Acar. Handan. Ting. Jeffrey M.. Srivastava. Samanvaya. LaBelle. James L.. Tirrell. Matthew V.. 2017. Molecular engineering solutions for therapeutic peptide delivery. Chemical Society Reviews. en. 46. 21. 6553–6569. 10.1039/C7CS00536A. 28902203. 0306-0012.
  17. Lequieu. Joshua. Córdoba. Andrés. Hinckley. Daniel. de Pablo. Juan J.. 2016-08-17. Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation. ACS Central Science. EN. 2. 9. 614–620. 10.1021/acscentsci.6b00170. 2374-7943. 5043426. 27725959.
  18. Web site: Institute for Molecular Engineering. ime.uchicago.edu. 2016-08-06.
  19. Web site: Molecular Engineering & Sciences Institute. www.moles.washington.edu. 2016-08-06.
  20. Web site: Top page - Kyoto University, Department of Molecular Engineering. www.ml.t.kyoto-u.ac.jp. 2016-08-06.
  21. Web site: Molecular Systems Design & Engineering. July 31, 2014. Royal Society of Chemistry. August 6, 2016.