C/\langle1,\tau\rangle
The q-expansion, where
q=e\pi
λ(\tau)=16q-128q2+704q3-3072q4+11488q5-38400q6+...
By symmetrizing the lambda function under the canonical action of the symmetric group S3 on X(2), and then normalizing suitably, one obtains a function on the upper half-plane that is invariant under the full modular group
\operatorname{SL}2(Z)
The function
λ(\tau)
\tau\mapsto\tau+2 ; \tau\mapsto
\tau | |
1-2\tau |
.
The generators of the modular group act by[3]
\tau\mapsto\tau+1 : λ\mapsto
λ | |
λ-1 |
;
\tau\mapsto-
1 | |
\tau |
: λ\mapsto1-λ .
Consequently, the action of the modular group on
λ(\tau)
\left\lbrace{λ,
1 | |
1-λ |
,
λ-1 | |
λ |
,
1 | |
λ |
,
λ | |
λ-1 |
,1-λ}\right\rbrace .
It is the square of the elliptic modulus,[5] that is,
λ(\tau)=k2(\tau)
η(\tau)
λ(\tau)=(
\sqrt{2 | |
η(\tfrac{\tau}{2})η |
2(2\tau)}{η3(\tau)})8=
16 | = | |||
|
| |||||||
|
and,
1 | |
(λ(\tau))1/4 |
-(λ(\tau))1/4=
1 | \left( | |
2 |
η(\tfrac{\tau | |
4 |
)}{η(\tau)}\right)4=2
| |||||||
2 |
2(\tfrac{\tau}{2})} | |
)}{\theta | |
2 |
where[6]
\theta2(\tau)
infty | |
=\sum | |
n=-infty |
\pii\tau(n+1/2)2 | |
e |
\theta3(\tau)=
infty | |
\sum | |
n=-infty |
\pii\taun2 | |
e |
\theta4(\tau)=
infty | |
\sum | |
n=-infty |
(-1)n
\pii\taun2 | |
e |
In terms of the half-periods of Weierstrass's elliptic functions, let
[\omega1,\omega2]
\tau= | \omega2 |
\omega1 |
e1=\wp\left(
\omega1 | |
2 |
\right), e2=\wp\left(
\omega2 | |
2 |
\right), e3=\wp\left(
\omega1+\omega2 | |
2 |
\right)
we have[5]
λ=
e3-e2 | |
e1-e2 |
.
Since the three half-period values are distinct, this shows that
λ
The relation to the j-invariant is[7] [8]
j(\tau)=
256(1-λ(1-λ))3 | |
(λ(1-λ))2 |
=
256(1-λ+λ2)3 | |
λ2(1-λ)2 |
.
y2=x(x-1)(x-λ)
Given
m\inC\setminus\{0,1\}
\tau=i | K\{1-m\ |
K
m=k2
λ(\tau)=m.
The modular equation of degree
p
p
λ(p\tau)
λ(\tau)
λ(p\tau)=u8
λ(\tau)=v8
p=2,3,5,7
(1+u4)2v8-4u4=0,
u4-v4+2uv(1-u2v2)=0,
u6-v6+5u2v2(u2-v2)+4uv(1-u4v4)=0,
(1-u8)(1-v8)-(1-uv)8=0.
v
u
\operatorname{Im}\tau>0
infty | ||
\begin{align}v&=\prod | \tanh | |
k=1 |
(k-1/2)\pii | |
\tau |
=\sqrt{2}e\pi
| |||||||||||
|
\\ &=\cfrac{\sqrt{2}e\pi
λ(i)=1/2
λ(pi)
p
λ(ni)
λ
n/2 | |
(ni)=\prod | |
k=1 |
| ||||
\operatorname{sl} |
(neven)
λ(ni)=
1 | |
2n |
n-1 | |
\prod | |
k=1 |
| ||||
\left(1-\operatorname{sl} |
\right)2 (nodd)
\operatorname{sl}
\varpi
The function
λ*(x)
x\inR+
k
K(k)
K(\sqrt{1-k2})
K\left[\sqrt{1-λ*(x)2 | |
\right]}{K[λ |
*(x)]}=\sqrt{x}
The values of
λ*(x)
λ*(x)=
| |||||||
)}{\theta |
2 | |
3(i\sqrt{x})} |
λ*(x)=
infty\exp[-(a+1/2) | |
\left[\sum | |
a=-infty |
2\pi\sqrt{x}]\right]
infty\exp(-a | |
a=-infty |
2\pi\sqrt{x})\right]-2
λ*(x)=
infty\operatorname{sech}(a\pi\sqrt{x})\right] | |
\left[\sum | |
a=-infty |
-1
The functions
λ*
λ
λ*(x)=\sqrt{λ(i\sqrt{x})}
Every
λ*
λ*(x\inQ+)\inA+.
K(λ*(x))
E(λ*(x))
x\inQ+
The following expression is valid for all
n\inN
\sqrt{n}=
n | ||
\sum | \operatorname{dn}\left[ | |
a=1 |
2a | |
n |
| ||||
K\left[λ |
| ||||
\right)\right];λ |
\right)\right]
where
\operatorname{dn}
k
By knowing one
λ*
λ*
λ*(n2x)=λ*(x)
n | ||
\operatorname{sn}\left\{ | ||
a=1 |
2a-1 | |
n |
K[λ*(x)];λ*(x)\right\}2
where
n\inN
\operatorname{sn}
k
Further relations:
λ*(x)2+λ*(1/x)2=1
[λ*(x)+1][λ*(4/x)+1]=2
λ*(4x)=
1-\sqrt{1-λ*(x)2 | |
λ*(x)-λ*(9x)=2[λ*(x)λ*(9x)]1/4-2[λ*(x)λ*(9x)]3/4
& a^-c^ = 2\sqrt(ac+a^3c^3)(1+3a^2c^2+a^4c^4)(2+3a^2c^2+2a^4c^4)\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^\right) &\left(c = \left[\frac{2\lambda^*(121x)}{1-\lambda^*(121x)^2}\right]^\right) \\
& (a^2-d^2)(a^4+d^4-7a^2d^2)[(a^2-d^2)^4-a^2d^2(a^2+d^2)^2] = 8ad+8a^d^\, &\left(a = \left[\frac{2\lambda^*(x)}{1-\lambda^*(x)^2}\right]^\right) &\left(d = \left[\frac{2\lambda^*(169x)}{1-\lambda^*(169x)^2}\right]^\right) \end
Lambda-star values of integer numbers of 4n-3-type:
λ*(1)=
1 | |
\sqrt{2 |
λ*(5)=\sin\left[
1 | |
2 |
\arcsin\left(\sqrt{5}-2\right)\right]
λ*(9)=
1 | |
2 |
(\sqrt{3}-1)(\sqrt{2}-\sqrt[4]{3})
λ*(13)=\sin\left[
1 | |
2 |
\arcsin(5\sqrt{13}-18)\right]
λ*(17)=\sin\left\{
1 | \arcsin\left[ | |
2 |
1 | |
64 |
\left(5+\sqrt{17}-\sqrt{10\sqrt{17}+26}\right)3\right]\right\}
λ*(21)=\sin\left\{
1 | |
2 |
\arcsin[(8-3\sqrt{7})(2\sqrt{7}-3\sqrt{3})]\right\}
λ*(25)=
1 | |
\sqrt{2 |
λ*(33)=\sin\left\{
1 | |
2 |
\arcsin[(10-3\sqrt{11})(2-\sqrt{3})3]\right\}
λ*(37)=\sin\left\{
1 | |
2 |
\arcsin[(\sqrt{37}-6)3]\right\}
λ*(45)=\sin\left\{
1 | |
2 |
\arcsin[(4-\sqrt{15})2(\sqrt{5}-2)3]\right\}
λ*(49)=
1 | |
4 |
(8+3\sqrt{7})(5-\sqrt{7}-\sqrt[4]{28})\left(\sqrt{14}-\sqrt{2}-\sqrt[8]{28}\sqrt{5-\sqrt{7}}\right)
λ*(57)=\sin\left\{
1 | |
2 |
\arcsin[(170-39\sqrt{19})(2-\sqrt{3})3]\right\}
λ*(73)=\sin\left\{
1 | \arcsin\left[ | |
2 |
1 | |
64 |
\left(45+5\sqrt{73}-3\sqrt{50\sqrt{73}+426}\right)3\right]\right\}
Lambda-star values of integer numbers of 4n-2-type:
λ*(2)=\sqrt{2}-1
λ*(6)=(2-\sqrt{3})(\sqrt{3}-\sqrt{2})
λ*(10)=(\sqrt{10}-3)(\sqrt{2}-1)2
λ*(14)=\tan\left\{
1 | \arctan\left[ | |
2 |
1 | |
8 |
\left(2\sqrt{2}+1-\sqrt{4\sqrt{2}+5}\right)3\right]\right\}
λ*(18)=(\sqrt{2}-1)3(2-\sqrt{3})2
λ*(22)=(10-3\sqrt{11})(3\sqrt{11}-7\sqrt{2})
λ*(30)=\tan\left\{
1 | |
2 |
\arctan[(\sqrt{10}-3)2(\sqrt{5}-2)2]\right\}
λ*(34)=\tan\left\{
1 | \arcsin\left[ | |
4 |
1 | |
9 |
(\sqrt{17}-4)2\right]\right\}
λ*(42)=\tan\left\{
1 | |
2 |
\arctan[(2\sqrt{7}-3\sqrt{3})2(2\sqrt{2}-\sqrt{7})2]\right\}
λ*(46)=\tan\left\{
1 | \arctan\left[ | |
2 |
1 | |
64 |
\left(3+\sqrt{2}-\sqrt{6\sqrt{2}+7}\right)6\right]\right\}
λ*(58)=(13\sqrt{58}-99)(\sqrt{2}-1)6
λ*(70)=\tan\left\{
1 | |
2 |
\arctan[(\sqrt{5}-2)4(\sqrt{2}-1)6]\right\}
λ*(78)=\tan\left\{
1 | |
2 |
\arctan[(5\sqrt{13}-18)2(\sqrt{26}-5)2]\right\}
λ*(82)=\tan\left\{
1 | \arcsin\left[ | |
4 |
1 | |
4761 |
(8\sqrt{41}-51)2\right]\right\}
Lambda-star values of integer numbers of 4n-1-type:
λ*(3)=
1 | |
2\sqrt{2 |
λ*(7)=
1 | |
4\sqrt{2 |
λ*(11)=
1 | |
8\sqrt{2 |
λ*(15)=
1 | |
8\sqrt{2 |
λ*(19)=
1 | |
8\sqrt{2 |
λ*(23)=
1 | |
16\sqrt{2 |
λ*(27)=
1 | |
16\sqrt{2 |
λ*(39)=\sin\left\{
1 | \arcsin\left[ | |
2 |
1 | |
16 |
\left(6-\sqrt{13}-3\sqrt{6\sqrt{13}-21}\right)\right]\right\}
λ*(55)=\sin\left\{
1 | \arcsin\left[ | |
2 |
1 | |
512 |
\left(3\sqrt{5}-3-\sqrt{6\sqrt{5}-2}\right)3\right]\right\}
Lambda-star values of integer numbers of 4n-type:
λ*(4)=(\sqrt{2}-1)2
λ*(8)=\left(\sqrt{2}+1-\sqrt{2\sqrt{2}+2}\right)2
λ*(12)=(\sqrt{3}-\sqrt{2})2(\sqrt{2}-1)2
λ*(16)=(\sqrt{2}+1)2(\sqrt[4]{2}-1)4
λ*(20)=\tan\left[
1 | |
4 |
\arcsin(\sqrt{5}-2)\right]2
λ*(24)=\tan\left\{
1 | |
2 |
\arcsin[(2-\sqrt{3})(\sqrt{3}-\sqrt{2})]\right\}2
λ*(28)=(2\sqrt{2}-\sqrt{7})2(\sqrt{2}-1)4
λ*(32)=\tan\left\{
1 | |
2 |
\arcsin\left[\left(\sqrt{2}+1-\sqrt{2\sqrt{2}+2}\right)2\right]\right\}2
Lambda-star values of rational fractions:
| ||||
λ |
\right)=\sqrt{2\sqrt{2}-2}
| ||||
λ |
\right)=
1 | |
2\sqrt{2 |
| ||||
λ |
\right)=(2-\sqrt{3})(\sqrt{3}+\sqrt{2})
| ||||
λ |
\right)=2\sqrt[4]{2}(\sqrt{2}-1)
| ||||
λ |
\right)=\sqrt[4]{8}(\sqrt{3}-\sqrt{2})(\sqrt{2}+1)\sqrt{(\sqrt{3}-1)3}
| ||||
λ |
\right)=
1 | |
2\sqrt{2 |
| ||||
λ |
\right)=(\sqrt{10}-3)(\sqrt{2}+1)2
| ||||
λ |
\right)=
1 | |
8\sqrt{2 |
| ||||
λ |
\right)=\tan\left[
\pi | - | |
4 |
1 | |
4 |
\arcsin(\sqrt{5}-2)\right]2
Ramanujan's class invariants
Gn
gn
-1/4 | |
G | |
n=2 |
e\pi\sqrt{n
infty | |
/24}\prod | |
k=0 |
\left(1+e-(2k+1)\pi\sqrt{n
-1/4 | |
g | |
n=2 |
e\pi\sqrt{n
infty | |
/24}\prod | |
k=0 |
\left(1-e-(2k+1)\pi\sqrt{n
n\inQ+
n
g58=\sqrt{
5+\sqrt{29 | |
Identities with the class invariants include[17]
Gn=G1/n, gn=
1 | |
g4/n |
, g4n=21/4gnGn.
ak{f}
ak{f}1
Gn=\sin\{2\arcsin[λ*(n)]\}-1/12=1 /\left[\sqrt[12]{2λ*(n)}\sqrt[24]{1-λ*(n)2}\right]
gn=\tan\{2\arctan[λ*(n)]\}-1/12=\sqrt[12]{[1-λ*(n)2]/[2λ*(n)]}
λ*(n)=\tan\left\{
1 | |
2 |
-12 | |
\arctan[g | |
n |
]\right\}=
24 | |
\sqrt{g | |
n |
12 | |
+1}-g | |
n |
The lambda function is used in the original proof of the Little Picard theorem, that an entire non-constant function on the complex plane cannot omit more than one value. This theorem was proved by Picard in 1879.[18] Suppose if possible that f is entire and does not take the values 0 and 1. Since λ is holomorphic, it has a local holomorphic inverse ω defined away from 0,1,∞. Consider the function z → ω(f(z)). By the Monodromy theorem this is holomorphic and maps the complex plane C to the upper half plane. From this it is easy to construct a holomorphic function from C to the unit disc, which by Liouville's theorem must be constant.[19]
The function
\tau\mapsto16/λ(2\tau)-8
\Gamma0(4)
q-1+20q-62q3+...
q=e2\pi
λ(\tau)
λ(\tau)
p
λ(ni)
n\inN.
\operatorname{sl}a\varpi
a\inQ.