A modified uniformly redundant array (MURA) is a type of mask used in coded aperture imaging. They were first proposed by Gottesman and Fenimore in 1989.[1]
MURAs can be generated in any length L that is prime and of the form
L=4m+1, m=1,2,3,...,
L=5,13,17,29,37
A={Ai}
L-1 | |
i=0 |
Ai=\begin{cases} 0&ifi=0,\\ 1&ifiisaquadraticresiduemoduloL,i ≠ 0,\\ 0&otherwise \end{cases}
L=4m+3
A0=1
As with any mask in coded aperture imaging, an inverse sequence must also be constructed. In the MURA case, this inverse G can be constructed easily given the original coding pattern A:
Gi=\begin{cases} +1&ifi=0,\\ +1&ifAi=1,i ≠ 0,\\ -1&ifAi=0,i ≠ 0,\end{cases}
A=\{Aij
p-1 | |
\} | |
i,j=0 |
Aij=\begin{cases}0&ifi=0,\\ 1&ifj=0,i ≠ 0,\\ 1&ifCiCj=+1,\\ 0&otherwise,\end{cases}
Ci=\begin{cases}+1&ifiisaquadraticresiduemodulop,\\ -1&otherwise, \end{cases}
Gij=\begin{cases}+1&ifi+j=0;\\ +1&ifAij=1, (i+j ≠ 0);\\ -1&ifAij=0, (i+j ≠ 0),; \end{cases}