Modified Uniformly Redundant Array Explained

A modified uniformly redundant array (MURA) is a type of mask used in coded aperture imaging. They were first proposed by Gottesman and Fenimore in 1989.[1]

Mathematical Construction of MURAs

MURAs can be generated in any length L that is prime and of the form

L=4m+1,  m=1,2,3,...,

the first five such values being

L=5,13,17,29,37

. The binary sequence of a linear MURA is given by

A={Ai}

L-1
i=0
, where

Ai=\begin{cases} 0&ifi=0,\\ 1&ifiisaquadraticresiduemoduloL,i0,\\ 0&otherwise \end{cases}

These linear MURA arrays can also be arranged to form hexagonal MURA arrays. One may note that if

L=4m+3

and

A0=1

, a uniformly redundant array(URA) is a generated.

As with any mask in coded aperture imaging, an inverse sequence must also be constructed. In the MURA case, this inverse G can be constructed easily given the original coding pattern A:

Gi=\begin{cases} +1&ifi=0,\\ +1&ifAi=1,i0,\\ -1&ifAi=0,i0,\end{cases}

Rectangular MURA arrays are constructed in a slightly different manner, letting

A=\{Aij

p-1
\}
i,j=0

, where

Aij=\begin{cases}0&ifi=0,\\ 1&ifj=0,i0,\\ 1&ifCiCj=+1,\\ 0&otherwise,\end{cases}

and

Ci=\begin{cases}+1&ifiisaquadraticresiduemodulop,\\ -1&otherwise, \end{cases}

The corresponding decoding function G is constructed as follows:

Gij=\begin{cases}+1&ifi+j=0;\\ +1&ifAij=1,(i+j0);\\ -1&ifAij=0,(i+j0),; \end{cases}

Notes and References

  1. Fenimore. E. E.. Gottesman. Stephen R.. 1989-10-15. New family of binary arrays for coded aperture imaging. Applied Optics. EN. 28. 20. 4344–4352. 10.1364/AO.28.004344. 2155-3165.