In mathematics, the Minkowski–Steiner formula is a formula relating the surface area and volume of compact subsets of Euclidean space. More precisely, it defines the surface area as the "derivative" of enclosed volume in an appropriate sense.
The Minkowski–Steiner formula is used, together with the Brunn–Minkowski theorem, to prove the isoperimetric inequality. It is named after Hermann Minkowski and Jakob Steiner.
Let
n\geq2
A\subsetneqRn
\mu(A)
A
λ(\partialA)
λ(\partialA):=\liminf\delta
\mu\left(A+\overline{B\delta | |
\right) |
-\mu(A)}{\delta},
where
\overline{B\delta
\delta>0
A+\overline{B\delta
is the Minkowski sum of
A
\overline{B\delta
A+\overline{B\delta
For "sufficiently regular" sets
A
λ(\partialA)
(n-1)
\partialA
A
When the set
A
\mu\left(A+\overline{B\delta
where the
λi
A
\omegan
Rn
\omegan=
2\pin | |
n\Gamma(n/2) |
,
where
\Gamma
Taking
A=\overline{BR
R
SR:=\partialBR
λ(SR)=\lim\delta
\mu\left(\overline{BR | |
+ |
\overline{B\delta
=\lim\delta
[(R+\delta)n-Rn]\omegan | |
\delta |
=nRn\omegan,
where
\omegan