In control theory, the minimum energy control is the control
u(t)
Let the linear time invariant (LTI) system be
x |
(t)=Ax(t)+Bu(t)
y(t)=Cx(t)+Du(t)
x(t0)=x0
u(t)
x1
t1
\bar{u}(t)
x0
x1
t1
t1 | |
\int | |
t0 |
\bar{u}*(t)\bar{u}(t)dt \geq
t1 | |
\int | |
t0 |
u*(t)u(t)dt.
To choose this input, first compute the controllability Gramian
Wc(t)=\int
t | |
t0 |
eA(t-\tau)BB*e
A*(t-\tau) | |
d\tau.
Assuming
Wc
u(t)=-B*e
| |||||||
-1 | |
W | |
c |
A(t1-t0) | |
(t | |
1)[e |
x0-x1].
Substitution into the solution
A(t-t0) | |
x(t)=e |
x0+\int
t | |
t0 |
eA(t-\tau)Bu(\tau)d\tau
verifies the achievement of state
x1
t1