\alpha
\kappa+
\kappa
X1,X2,...
Xn
The proof is by transfinite induction. Let
\alpha
\beta<\alpha
\beta | |
\{X | |
n\} |
n
\beta
Fix an increasing sequence
\{\beta\gamma\}\gamma<cf(\alpha)
\alpha
\beta0=0
Note
cf(\alpha)\le\kappa
Define:
\alpha | |
X | |
0 |
=
\alpha | |
\{0\}; X | |
n+1 |
=cup\gamma
\beta\gamma+1 | |
X | |
n\setminus |
\beta\gamma
Observe that:
cupn>0
\alpha | |
X | |
n |
=cupncup\gamma
\beta\gamma+1 | |
X | |
n\setminus |
\beta\gamma=cup\gammacupn
\beta\gamma+1 | |
X | |
n\setminus |
\beta\gamma=cup\gamma\beta\gamma+1\setminus\beta\gamma=\alpha\setminus\beta0
and so
\alpha | |
cup | |
n |
=\alpha
Let
ot(A)
A
\alpha | |
ot(X | |
0) |
=1=\kappa0
Noting that the sets
\beta\gamma+1\setminus\beta\gamma
\beta\gamma+1 | |
X | |
n\setminus\beta |
\gamma
\beta\gamma+1 | |
X | |
n |
\alpha | |
ot(X | |
n+1 |
)=\sum\gamma
\beta\gamma+1 | |
ot(X | |
n\setminus\beta |
\gamma)\leq\sum\gamma\kappan=\kappan ⋅ cf(\alpha)\leq\kappan ⋅ \kappa=\kappan+1