Microprocessor chronology explained

1970s

The first chips that could be considered microprocessors were designed and manufactured in the late 1960s and early 1970s, including the MP944 used in the Grumman F-14 .[1] Intel's 4004 of 1971 is widely regarded as the first commercial microprocessor.[2]

Designers predominantly used MOSFET transistors with pMOS logic in the early 1970s, switching to nMOS logic after the mid-1970s. nMOS had the advantage that it could run on a single voltage, typically +5V, which simplified the power supply requirements and allowed it to be easily interfaced with the wide variety of +5V transistor-transistor logic (TTL) devices. nMOS had the disadvantage that it was more susceptible to electronic noise generated by slight impurities in the underlying silicon material, and it was not until the mid-1970s that these, sodium in particular, were successfully removed to the required levels. At that time, around 1975, nMOS quickly took over the market.[3]

This corresponded with the introduction of new semiconductor masking systems, notably the Micralign system from Perkin-Elmer. Micralign projected an image of the mask onto the silicon wafer, never touching it directly, which eliminated the previous problems when the mask would be lifted off the surface and take away some of the photoresist along with it, ruining the chips on that portion of the wafer.[4] By reducing the number of flawed chips, from about 70% to 10%, the cost of complex designs like early microprocessors fell by the same amount. Systems based on contact aligners cost on the order of $300 in single-unit quantities, the MOS 6502, designed specifically to take advantage of these improvements, cost only $25.[5]

This period also saw considerable experimentation with various word lengths. Early on, 4-bit processors were common, like the Intel 4004, simply because making a wider word length could not be accomplished cost-effectively in the room available on the small wafers of the era, especially when the majority would be defective. As yields improved, wafer sizes grew, and feature size continued to be reduced, more complex 8-bit designs emerged like the Intel 8080 and 6502. 16-bit processors emerged early but were expensive; by the decade's end, low-cost 16-bit designs like the Zilog Z8000 were becoming common. Some unusual word lengths were also produced, including 12-bit and 20-bit, often matching a design that had previously been implemented in a multi-chip format in a minicomputer. These had largely disappeared by the end of the decade as minicomputers moved to 32-bit formats.

DateNameDeveloperdata-sort-type="number" Max clock
(first version)
data-sort-type="number" Word size
(bits)
data-sort-type="number" Processdata-sort-type="number" Chips[6] data-sort-type="number" TransistorsMOSFET
1969AL1Four-Phase Systems1 MHz810 μm14,000MOS[7]
1970TMS 1802NCTexas Instruments?8?1?pMOS
19714004Intel740 kHz410 μm12,250pMOS
1972PPS-25Fairchild400 kHz4 2pMOS
1972μPD700NEC 4 1[8]
19728008Intel500 kHz810 μm13,500pMOS
1972PPS-4Rockwell200 kHz4 1pMOS[9]
1973IMP-16National715 kHz16 5pMOS[10]
1973μCOM-4NEC2 MHz47.5 μm12,500NMOS[11] [12]
1973TLCS-12Toshiba1 MHz126 μm1 2,800 silicon gatespMOS[13]
1973Mini-DBurroughs1 MHz8 1pMOS
1974IMP-8National715 kHz8 3pMOS
19748080Intel2 MHz86 μm16,000NMOS
1974μCOM-8NEC2 MHz8 1NMOS
19745065Mostek1.4 MHz8 1pMOS
1974μCOM-16NEC2 MHz16 2NMOS
1974IMP-4National500 kHz4 3pMOS
19744040Intel740 kHz410 μm13,000pMOS
19746800Motorola1 MHz8-14,100NMOS
1974TMS 1000Texas Instruments400 kHz48 μm18,000pMOS,nMOS,cMOS
1974PACENational1.33 MHz16 1pMOS[14]
1974ISP-8A/500 (SC/MP)National1 MHz8 1pMOS
19756100Intersil4 MHz12-14,000CMOS[15] [16]
1975TLCS-12AToshiba1.2 MHz12-1pMOS
19752650Signetics1.2 MHz8 1NMOS
1975PPS-8Rockwell256 kHz8 1pMOS
1975F-8Fairchild2 MHz8 1NMOS
1975CDP 1801RCA2 MHz85 μm25,000CMOS[17] [18]
19756502MOS Technology1 MHz8-13,510NMOS (dynamic)
1975PFL-16A (MN 1610)Panafacom2 MHz16-1NMOS
1975BPCHewlett Packard10 MHz16-16,000 (+ ROM)NMOS[19] [20]
1975MCP-1600Western Digital3.3 MHz16-3NMOS[21]
1975CP1600General Instrument3.3 MHz16 1NMOS[22] [23] [24]
1976CDP 1802RCA6.4 MHz8 1CMOS[25] [26]
1976Z-80Zilog2.5 MHz84 μm18,500NMOS
1976TMS9900Texas Instruments3.3 MHz16-18,000nMOS
19768x300Signetics8 MHz8 1Bipolar[27] [28]
1976WD16Western Digital3.3 MHz165NMOS[29]
1977Bellmac-8 (WE212)Bell Labs2.0 MHz85 μm17,000CMOS
19778085Intel3.0 MHz83 μm16,500nMOS
1977MC14500BMotorola1.0 MHz11CMOS
19786809Motorola1 MHz85 μm19,000NMOS
19788086Intel5 MHz163 μm129,000nMOS
19786801Motorola-85 μm135,000nMOS
1979Z8000Zilog-16-117,500nMOS
19798088Intel5 MHz8/163 μm129,000NMOS (HMOS)
197968000Motorola8 MHz16/323.5 μm168,000NMOS (HMOS)[30]

1980s

As Moore's Law continued to drive the industry towards more complex chip designs, the expected widespread move from 8-bit designs of the 1970s to 16-bit designs almost didn't occur; instead, new 32-bit designs like the Motorola 68000 and National Semiconductor NS32000 emerged that offered far more performance. The only widespread use of 16-bit systems was in the IBM PC, which had selected the Intel 8088 in 1979 before the new designs had matured.

Another change was the move to CMOS gates as the primary method of building complex CPUs. CMOS had been available since the early 1970s; RCA introduced the COSMAC processor using CMOS in 1975.[31] Whereas earlier systems used a single transistor as the basis for each "gate", CMOS used a two-sided design, essentially making it twice as expensive to build. Its advantage was that its logic was not based on the voltage of a transistor compared to the silicon substrate, but the difference in voltages between the two sides, which was detectable at much lower power levels. As processor complexity continued to grow, power dissipation had become a significant concern and chips were prone to overheating; CMOS greatly reduced this problem and quickly took over the market.[32] This was aided by the uptake of CMOS by Japanese firms while US firms remained on nMOS, giving the Japanese industry a major advance during the 1980s.[33]

Semiconductor fabrication techniques continued to improve throughout. The Micralign, which had "created the modern IC industry", was obsolete by the early 1980s. They were replaced by the new steppers, which used high magnifications and extremely powerful light sources to allow a large mask to be copied onto the wafer at ever-smaller sizes. This technology allowed the industry to break below the former 1 micron limit.

Key home computers in the early part of the decade predominantly use processors developed in the 1970s. Versions of the 6502, first released in 1975, powered the Commodore 64, Apple II, BBC Micro, and Atari 8-bit computers. The 8-bit Zilog Z80 (1976) is at the core of the ZX Spectrum, MSX systems and many others. The 8086-based IBM PC, launched in 1981, started the move to 16-bit, but was soon passed by the 68000-based 16/32-bit Macintosh, then the Atari ST and Amiga. IBM PC compatibles moved to 32-bit with the introduction of the Intel 80386 in late 1985, although 386-based systems were considerably expensive at the time.

In addition to ever-growing word lengths, microprocessors began to add additional functional units that had previously been optional external parts. By the middle of the decade, memory management units (MMUs) were becoming commonplace, first appearing on designs like the Intel 80286 and Motorola 68030. By the end of the decade, floating point units (FPUs) were being added, first appearing on 1989s Intel 486 and followed the next year by the Motorola 68040.

Another change that began during the 1980s involved overall design philosophy with the emergence of the reduced instruction set computer, or RISC. Although the concept was first developed by IBM in the 1970s, the company did not introduce powerful systems based on it, largely for fear of cannibalizing their sales of larger mainframe systems. Market introduction was driven by smaller companies like MIPS Technologies, SPARC and ARM. These companies did not have access to high-end fabrication like Intel and Motorola, but were able to introduce chips that were highly competitive with those companies with a fraction of the complexity. By the end of the decade, every major vendor was introducing a RISC design of their own, like the IBM POWER, Intel i860 and Motorola 88000.

DateNameDeveloperdata-sort-type="number" Max Clock
(first version)
data-sort-type="number" Word size
(bits)
data-sort-type="number" Processdata-sort-type="number" Transistors
198016032National Semiconductor-16/32-60,000
1980BELLMAC-32/WE 32000Bell Labs32150,000
19816120Harris Corporation10 MHz12-20,000 (CMOS)[34]
1981ROMPIBM10 MHz322 μm45,000
1981T-11DEC2.5 MHz165 μm17,000 (NMOS)
1982RISC-I[35] UC Berkeley1 MHz-5 μm44,420 (NMOS)
1982FOCUSHewlett Packard18 MHz321.5 μm450,000
198280186Intel6 MHz16-55,000
198280188Intel8 MHz8/16-55,000
198280286Intel6 MHz161.5 μm134,000
1983RISC-IIUC Berkeley3 MHz-3 μm40,760 (NMOS)
1983MIPS[36] Stanford University2 MHz323 μm25,000
198365816Western Design Center-16--
198468020Motorola16 MHz322 μm190,000
1984NS32032National Semiconductor-32-70,000
1984V20NEC5 MHz8/16-63,000
198580386Intel12 MHz321.5 μm275,000
1985MicroVax II 78032DEC5 MHz323.0 μm125,000
1985R2000MIPS8 MHz322 μm115,000
1985[37] Novix NC4016Harris Corporation8 MHz163 μm[38] 16,000[39]
1986Z80000Zilog-32-91,000
1986SPARC MB86900Fujitsu[40] [41] [42] 15 MHz320.8 μm800,000
1986V60[43] NEC16 MHz16/321.5 μm375,000
198780C186Intel10 MHz16-56,000 (CMOS)
1987CVAX 78034DEC12.5 MHz322.0 μm134,000
1987ARM2Acorn8 MHz322 μm25,000[44]
1987Gmicro/200[45] Hitachi--1 μm730,000
198768030Motorola16 MHz321.3 μm273,000
1987V70NEC20 MHz16/321.5 μm385,000
1988R3000MIPS25 MHz321.2 μm120,000
198880386SXIntel12 MHz16/32--
1988i960Intel10 MHz33/321.5 μm250,000
1989i960CA[46] Intel1633 MHz33/320.8 μm600,000
1989VAX DC520 "Rigel"DEC35 MHz321.5 μm320,000
198980486Intel25 MHz321 μm1,180,000
1989i860Intel25 MHz321 μm1,000,000

1990s

The 32-bit microprocessor dominated the consumer market in the 1990s. Processor clock speeds increased by more than tenfold between 1990 and 1999, and 64-bit processors began to emerge later in the decade. In the 1990s, microprocessors no longer used the same clock speed for the processor and the RAM. Processors began to have a front-side bus (FSB) clock speed used in communication with RAM and other components. Typically, the processor itself ran at a clock speed that was a multiple of the FSB clock speed. Intel's Pentium III, for example, had an internal clock speed of 450–600 MHz and an FSB speed of 100–133 MHz. Only the processor's internal clock speed is shown here.

DateNameDeveloperdata-sort-type="number" Clockdata-sort-type="number" Word size
(bits)
data-sort-type="number" Processdata-sort-type="number" Transistors
(millions)
data-sort-type="number" Threads
199068040Motorola40 MHz32-1.2
1990POWER1IBM20–30 MHz321,000 nm6.9
1991R4000MIPS Computer Systems100 MHz64800 nm1.35
1991NVAXDEC62.5–90.91 MHz32750 nm1.3
1991RSCIBM33 MHz32800 nm1.0[47]
1992SH-1Hitachi20 MHz[48] 32800 nm0.6[49]
1992Alpha 21064DEC100–200 MHz64750 nm1.68
1992microSPARC ISun40–50 MHz32800 nm0.8
1992PA-7100Hewlett Packard100 MHz32800 nm0.85[50]
1992486SLCCyrix40 MHz16
1993HARP-1Hitachi120 MHz-500 nm2.8[51]
1993PowerPC 601IBM, Motorola50–80 MHz32600 nm2.8
1993PentiumIntel60–66 MHz32800 nm3.1
1993POWER2IBM55–71.5 MHz32720 nm23
1994microSPARC IIFujitsu60–125 MHz-500 nm2.3
1994S/390 G1IBM-32-
199468060Motorola50 MHz32600 nm2.5
1994Alpha 21064ADEC200–300 MHz64500 nm2.85
1994R4600100–125 MHz64650 nm2.2
1994PA-7200Hewlett Packard125 MHz32550 nm1.26
1994PowerPC 603IBM, Motorola60–120 MHz32500 nm1.6
1994PowerPC 604IBM, Motorola100–180 MHz32500 nm3.6
1994PA-7100LCHewlett Packard100 MHz32750 nm0.90
1995Alpha 21164DEC266–333 MHz64500 nm9.3
1995S/390 G2IBM-32-
1995UltraSPARCSun143–167 MHz64470 nm5.2
1995SPARC64HAL Computer Systems101–118 MHz64400 nm-
1995Pentium ProIntel150–200 MHz32350 nm5.5
1996Alpha 21164ADEC400–500 MHz64350 nm9.7
1995S/390 G3IBM-32-
1996K5AMD75–100 MHz32500 nm4.3
1996R10000MTI150–250 MHz64350 nm6.7
1996R5000180–250 MHz-350 nm3.7
1996SPARC64 IIHAL Computer Systems141–161 MHz64350 nm-
1996PA-8000Hewlett-Packard160–180 MHz64500 nm3.8
1996POWER2 Super Chip (P2SC)IBM150 MHz32290 nm15
1997SH-4Hitachi200 MHz-200 nm[52] 10[53]
1997RS64IBM125 MHz64? nm?
1997Pentium IIIntel233–300 MHz32350 nm7.5
1997PowerPC 620IBM, Motorola120–150 MHz64350 nm6.9
1997UltraSPARC IIsSun250–400 MHz64350 nm5.4
1997S/390 G4IBM370 MHz32500 nm7.8
1997PowerPC 750IBM, Motorola233–366 MHz32260 nm6.35
1997K6AMD166–233 MHz32350 nm8.8
1998RS64-IIIBM262 MHz64350 nm12.5
1998Alpha 21264DEC450–600 MHz64350 nm15.2
1998MIPS R12000SGI270–400 MHz64250180 nm6.9
1998RM7000QED250–300 MHz-250 nm18
1998SPARC64 IIIHAL Computer Systems250–330 MHz64240 nm17.6
1998S/390 G5IBM500 MHz32250 nm25
1998PA-8500Hewlett Packard300–440 MHz64250 nm140
1998POWER3IBM200 MHz64250 nm15
1999S/390 G6IBM550-637 MHz32-
1999Emotion EngineSony, Toshiba294–300 MHz-180–65 nm[54] 13.5[55]
1999Pentium IIIIntel450–600 MHz32250 nm9.5
1999RS64-IIIIBM450 MHz64220 nm342
1999PowerPC 7400Motorola350–500 MHz32200–130 nm10.5
1999AthlonAMD500–1000 MHz32250 nm22

2000s

64-bit processors became mainstream in the 2000s. Microprocessor clock speeds reached a ceiling because of the heat dissipation barrier. Instead of implementing expensive and impractical cooling systems, manufacturers turned to parallel computing in the form of the multi-core processor. Overclocking had its roots in the 1990s, but came into its own in the 2000s. Off-the-shelf cooling systems designed for overclocked processors became common, and the gaming PC had its advent as well. Over the decade, transistor counts increased by about an order of magnitude, a trend continued from previous decades. Process sizes decreased about fourfold, from 180 nm to 45 nm.

DateNameDeveloperClockProcessTransistors
(millions)
Cores per die /
Dies per module
2000Athlon XPAMD1.33–1.73 GHz180 nm37.51 / 1
2000DuronAMD550 MHz–1.3 GHz180 nm25 1 / 1
2000RS64-IVIBM600–750 MHz180 nm44 1 / 2
2000Pentium 4Intel1.3–2 GHz180–130 nm421 / 1
2000SPARC64 IVFujitsu450–810 MHz130 nm-1 / 1
2000z900IBM918 MHz180 nm471 / 12, 20
2001MIPS R14000SGI500–600 MHz130 nm7.21 / 1
2001POWER4IBM1.1–1.4 GHz180–130 nm1742 / 1, 4
2001UltraSPARC IIISun750–1200 MHz130 nm291 / 1
2001ItaniumIntel733–800 MHz180 nm251 / 1
2001PowerPC 7450Motorola733–800 MHz180–130 nm331 / 1
2002SPARC64 VFujitsu1.1–1.35 GHz130 nm1901 / 1
2002Itanium 2Intel0.9–1 GHz180 nm4101 / 1
2003PowerPC 970IBM1.6–2.0 GHz130–90 nm521 / 1
2003Pentium MIntel0.9–1.7 GHz130–90 nm771 / 1
2003OpteronAMD1.4–2.4 GHz130 nm1061 / 1
2004POWER5IBM1.65–1.9 GHz130–90 nm2762 / 1, 2, 4
2004PowerPC BGLIBM700 MHz130 nm952 / 1
2005IBM z9IBM
2005Opteron "Athens"AMD1.6–3.0 GHz90 nm1141 / 1
2005Pentium DIntel2.8–3.2 GHz90 nm1151 / 2
2005Athlon 64 X2AMD2–2.4 GHz90 nm2432 / 1
2005PowerPC 970MPIBM1.2–2.5 GHz90 nm1832 / 1
2005UltraSPARC IVSun1.05–1.35 GHz130 nm662 / 1
2005UltraSPARC T1Sun1–1.4 GHz90 nm3008 / 1
2005XenonIBM3.2 GHz90–45 nm1653 / 1
2006Core DuoIntel1.1–2.33 GHz90–65 nm1512 / 1
2006Core 2Intel1.06–2.67 GHz65–45 nm2912 / 1, 2
2006Cell/B.E.IBM, Sony, Toshiba3.2–4.6 GHz90–45 nm2411+8 / 1
2006Itanium "Montecito"Intel1.4–1.6 GHz90 nm17202 / 1
2007POWER6IBM3.5–4.7 GHz65 nm7902 / 1
2007SPARC64 VIFujitsu2.15–2.4 GHz90 nm5432 / 1
2007UltraSPARC T2Sun1–1.4 GHz65 nm5038 / 1
2007TILE64Tilera600–900 MHz90–45 nm?64 / 1
2007Opteron "Barcelona"AMD1.8–3.2 GHz65 nm4634 / 1
2007PowerPC BGPIBM850 MHz90 nm2084 / 1
2008PhenomAMD1.8–2.6 GHz65 nm4502, 3, 4 / 1
2008z10IBM4.4 GHz65 nm9934 / 7
2008PowerXCell 8iIBM2.8–4.0 GHz65 nm2501+8 / 1
2008SPARC64 VIIFujitsu2.4–2.88 GHz65 nm6004 / 1
2008AtomIntel0.8–1.6 GHz65–45 nm471 / 1
2008Core i7Intel2.66–3.2 GHz45–32 nm7302, 4, 6 / 1
2008TILEPro64Tilera600–866 MHz90–45 nm?64 / 1
2008Opteron "Shanghai"AMD2.3–2.9 GHz45 nm7514 / 1
2009Phenom IIAMD2.5–3.2 GHz45 nm7582, 3, 4, 6 / 1
2009Opteron "Istanbul"AMD2.2–2.8 GHz45 nm9046 / 1

2010s

A new trend appears, the multi-chip module made of several chiplets. This is multiple monolithic chips in a single package. This allows higher integration with several smaller and easier to manufacture chips.

DateNameDeveloperClockProcessTransistors
(millions)
Cores per die /
Dies per module
Threads
per core
2010POWER7IBM3–4.14 GHz45 nm12004, 6, 8 / 1, 44
2010Itanium "Tukwila"Intel2 GHz65 nm20002, 4 / 12
2010Opteron "Magny-cours"AMD1.7–2.4 GHz45 nm18104, 6 / 21
2010Xeon "Nehalem-EX"Intel1.73–2.66 GHz45 nm23004, 6, 8 / 12
2010z196IBM3.8–5.2 GHz45 nm14004 / 1, 61
2010SPARC T3Sun1.6 GHz45 nm200016 / 18
2010Fujitsu2.66–3.0 GHz45 nm?4 / 12
2010Intel1.86–3.33 GHz32 nm11704–6 / 12
2011Intel1.6–3.4 GHz32 nm995[56] 2, 4 / 1(1,) 2
2011AMD1.0–1.6 GHz40 nm380[57] 1, 2 / 11
2011Intel1.73–2.67 GHz32 nm26004, 6, 8, 10 / 11–2
2011IBM1.6 GHz45 nm147018 / 14
2011Fujitsu2.0 GHz45 nm7608 / 12
2011AMD3.1–3.6 GHz32 nm1200[58] 4–8 / 21
2011SPARC T4Oracle2.8–3 GHz40 nm8558 / 18
2012SPARC64 IXfxFujitsu1.848 GHz40 nm187016 / 12
2012zEC12IBM5.5 GHz32 nm27506 / 61
2012POWER7+IBM3.1–5.3 GHz32 nm21008 / 1, 24
2012Itanium "Poulson"Intel1.73–2.53 GHz32 nm31008 / 12
2013Intel "Haswell"Intel1.9–4.4 GHz22 nm14004 / 12
2013SPARC64 XFujitsu2.8–3 GHz28 nm295016 / 12
2013SPARC T5Oracle3.6 GHz28 nm150016 / 18
2014POWER8IBM2.5–5 GHz22 nm42006, 12 / 1, 28
2014Intel "Broadwell"Intel1.8-4 GHz14 nm19002, 4, 6, 8, 12, 16 / 1, 2, 42
2015z13IBM5 GHz22 nm39908 / 12
2015A8-7670KAMD3.6 GHz28 nm24104 / 11
2016RISC-V E31[59] SiFive320 MHz28 nm?11
2017ZenAMD3.2–4.1 GHz14 nm48008, 16 / 1, 2, 42
2017z14IBM5.2 GHz14 nm610010 / 12
2017POWER9IBM4 GHz14 nm800012, 24 / 14, 8
2017SPARC M8[60] Oracle5 GHz20 nm~10,000[61] 328
2017RISC-V U54-MC[62] SiFive1.5 GHz28 nm25041
2018Intel "Cannon Lake"Intel2.2–3.2 GHz10 nm?2 / 12
2018Zen+AMD2.8–3.7 GHz12 nm48002, 4, 6, 8 / 1, 2, 41, 2
2018RISC-V U74-MC[63] SiFive1.5 GHz??41
2019Zen 2AMD2–4.7 GHz7 nm, 12nm39004, 6, 8 / 1, 2, 4, 6, 82
2019z15IBM5.2 GHz14 nm920012 / 12

2020s

DateNameDeveloperClockProcessTransistors
(millions)
Cores per die /
Dies per module
Threads
per core
2020Zen 3AMD3.4–4.9 GHz7 nm, 12nm6240-352904, 6, 8 / 1, 2, 4, 8 2
2020M1 SeriesApple3.2 GHz5 nm16000-1440004-8P, 2-4E / 1, 21
2021Alder LakeIntel0.7-5.3 GHz7 nm?0-8P, 2-8E 1-2
2022IBM TelumIBM>5 GHz7 nm2200081
2022M2 SeriesApple3.49/2.42 GHz5 nm (N5P)20000-1340004-8P, 4E / 1, 21
2022Zen 4AMD2.0-5.7 GHz5 nm, 7 nm?4, 6, 8 / 1, 2, 4, 8, 122
2023Zen 4CAMD2.0 - 3.1 GHz5 nm?4, 6, 8, 12, 14, 16 / 1, 2, 4, 81, 2
2023M3 SeriesApple4.05/2.75 GHz3 nm25000-920004-12P, 4-6E1
2023Meteor LakeIntel0.7-5.0 GHz5 nm, 7 nm?2-6P, 4-8E, 2LP-E 1-2
2024OryonQualcomm4.3 GHz4 nm?12 1
2024Zen 5AMD4.3 GHz5 nm?6, 8, 16 / 2, 32

See also

References and notes

References
  • Notes
  • Notes and References

    1. Web site: Laws . David . 2018-09-20 . Who Invented the Microprocessor? . 2024-01-19 . Computer History Museum . en.
    2. Web site: The Story of the Intel 4004. Intel.
    3. Web site: NMOS versus PMOS .
    4. Web site: Perkin Elmer - Micralign Projection Mask Alignment System.
    5. Web site: The MOS 6502 and the Best Layout Guy in the World . swtch.com . 2011-01-03 . 2014-08-09 .
    6. Book: Belzer . Jack . Holzman . Albert G. . Kent . Allen . Encyclopedia of Computer Science and Technology: Volume 10 - Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification . 1978 . . 9780824722609 . 402 .
    7. Web site: Four-Phase Systems AL1 Processor – 8-bits by Lee Boysel | the CPU Shack Museum . 16 August 2014 .
    8. Web site: 1970s: Development and evolution of microprocessors . Semiconductor History Museum of Japan . dead . https://web.archive.org/web/20190627161417/http://www.shmj.or.jp/english/pdf/ic/exhibi748E.pdf . 2019-06-27 . 16 September 2020.
    9. Web site: Rockwell PPS-4. The Antique Chip Collector's Page. 2010-06-14.
    10. Web site: National Semiconductor IMP-16. https://web.archive.org/web/20020207082859/http://www.antiquetech.com/chips/NSIMP-16.htm. dead. 2002-02-07. The Antique Chip Collector's Page. 2010-06-14.
    11. Ryoichi Mori. Hiroaki Tajima. Morihiko Tajima. Yoshikuni Okada. October 1977. Microprocessors in Japan. Euromicro Newsletter. 3. 4. 50–7 (51, Table 2.2). 10.1016/0303-1268(77)90111-0.
    12. Web site: NEC 751 (uCOM-4). The Antique Chip Collector's Page. https://web.archive.org/web/20110525202756/http://www.antiquetech.com/chips/NEC751.htm. 2011-05-25. dead. 2010-06-11.
    13. Web site: 1973: 12-bit engine-control microprocessor (Toshiba) . Semiconductor History Museum of Japan . dead . https://web.archive.org/web/20190627203018/http://www.shmj.or.jp/english/pdf/ic/exhibi739E.pdf . 2019-06-27 . 16 September 2020.
    14. Encyclopedia: Allen Kent, James G. Williams . Encyclopedia of Microcomputers . 1990 . Marcel Dekker . 7 . Evolution of Computerized Maintenance Management to Generation of Random Numbers . 0-8247-2706-1 . 336 .
    15. Web site: Jeff . Little . Intersil Intercept Jr . 2009-03-04 . ClassicCmp . 2012-09-16 . 2014-10-03 . https://web.archive.org/web/20141003082813/http://www.classiccmp.org/pipermail/cctech/2009-March/063949.html . dead .
    16. Web site: Intersil IM6100 CMOS 12 Bit Microprocessor family databook .
    17. Web site: RCA COSMAC 1801 . The Antique Chip Collector's Page . 2010-06-14 . 2013-09-03 . https://web.archive.org/web/20130903114633/http://www.antiquetech.com/chips/RCA1801.htm . dead .
    18. CDP 1800 μP Commercially available . Microcomputer Digest . 2 . 4 . 1–3 . October 1975 . 2023-11-13.
    19. Web site: Hybrid Microprocessor . 2008-06-15 .
    20. HP designs Custom 16-bit μC Chip . Microcomputer Digest . 2 . 4 . 8 . October 1975 . 2023-11-13.
    21. Book: MCP-1600 Microprocessor Users Manual . 1975 . Western Digital . 28 April 2022.
    22. David Russell . Microprocessor survey . Microprocessors . 2 . 1 . 13–20, See p. 18 . February 1978 . 10.1016/0308-5953(78)90071-5.
    23. Web site: Microprocessors — The Early Years 1971–1974 . The Antique Chip Collector's Page . 2010-06-16 . 2013-06-04 . https://web.archive.org/web/20130604075458/http://www.antiquetech.com/history/mpu1971-1974.htm . dead .
    24. Web site: CP1600 16-Bit Single-Chip Microprocessor . 1977 . data sheet . General Instrument . 2010-06-18 . dead . https://web.archive.org/web/20110526031123/http://www.rhoent.com/cp_lp.pdf . 2011-05-26 .
    25. Web site: RCA COSMAC 1802 . The Antique Chip Collector's Page . 2010-06-14 . dead . https://web.archive.org/web/20130102213115/http://www.antiquetech.com/chips/RCA1802.htm . 2013-01-02 .
    26. CDP 1802 . Microcomputer Digest . 2 . 10 . 1, 4 . April 1976 . 2023-11-13.
    27. Hans Hoffman . John Nemec . A fast microprocessor for control applications . Euromicro Newsletter . 3 . 3 . 53–59 . April 1977 . 10.1016/0303-1268(77)90010-4.
    28. Web site: Microprocessors — The Explosion 1975–1976 . The Antique Chip Collector's Page . 2010-06-18 . dead . https://web.archive.org/web/20090909151455/http://www.antiquetech.com/history/mpu1975-1976.htm . 2009-09-09 .
    29. Web site: WD16 Microcomputer Programmer's Reference Manual . Western Digital . 10 December 2021.
    30. Web site: Chip Hall of Fame: Motorola MC68000 Microprocessor . . . 19 June 2019 . 30 June 2017.
    31. Chip Hall of Fame: RCA CDP 1802 . Stephen . Cass . 2 July 2018 . IEEE Spectrum .
    32. Book: Kuhn . Kelin . High Mobility Materials for CMOS Applications . 2018 . . 9780081020623 . CMOS and Beyond CMOS: Scaling Challenges . 1 . https://books.google.com/books?id=sOJgDwAAQBAJ&pg=PA1.
    33. Book: Gilder . George . Microcosm: The Quantum Revolution In Economics And Technology . 1990 . . 9780671705923 . 144–5 . registration .
    34. Book: Harris CMOS Digital Data Book . 4–3–21 .
    35. Web site: Berkeley Hardware Prototypes . 2008-06-15.
    36. 10.1145/2465.214917. Reduced instruction set computers. 1985. Patterson, David A.. Communications of the ACM. 28. 8–21. 1493886. free.
    37. Web site: Forth chips list . 2010 . UltraTechnology .
    38. Book: Koopman, Philip J. . 4.4 Architecture of the NOVIX NC4016 . https://www.ece.cmu.edu/~koopman/stack_computers/sec4_4.html . Stack Computers: the new wave . E. Horwood . 1989 . 0745804187 .
    39. Tom . Hand . The Harris RTX 2000 Microcontroller . Journal of Forth Application and Research . 6 . 1 . 0738-2022 . 1994 .
    40. Web site: Fujitsu to take ARM into the realm of Super . The CPU Shack Museum . June 21, 2016 . 30 June 2019.
    41. Web site: Fujitsu SPARC . cpu-collection.de . 30 June 2019.
    42. Web site: Timeline . . 30 June 2019.
    43. Kimura S, Komoto Y, Yano Y . Implementation of the V60/V70 and its FRM function . IEEE Micro . 8 . 2 . 22–36 . 1988 . 10.1109/40.527 . 9507994 .
    44. C Green . P Gülzow . L Johnson . K Meinzer . J Miller . The Experimental IHU-2 Aboard P3D . Amsat Journal . 22 . 2 . Mar–Apr 1999 . The first processor using these principles, called ARM-1, was fabricated by VLSI in April 1985, and gave startling performance for the time, whilst using barely 25,000 transistors.
    45. Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K . Realization of Gmicro/200 . IEEE Micro . 8 . 2 . 12–21 . 1988 . 10.1109/40.526 . 36938046 .
    46. Web site: Intel i960 Embedded Microprocessor . https://web.archive.org/web/20030303223737/http://micro.magnet.fsu.edu/optics/olympusmicd/galleries/chips/intel960b.html . dead . 3 March 2003 . . . 29 June 2019 . 3 March 2003.
    47. Moore CR, Balser DM, Muhich JS, East RE . IBM Single Chip RISC Processor (RSC) . Proceedings of the 1991 IEEE International Conference on Computer Design on VLSI in Computer & Processors . IEEE Computer Society . 200–4 . 1992 . 0-8186-3110-4 . 2008-11-15 . 2013-10-04 . https://web.archive.org/web/20131004213712/http://zmoore.net/RSC%20ICCD92.pdf . dead .
    48. Embedded-DSP SuperH Family and Its Applications . Hitachi Review . 1998 . 47 . 4 . 121–7 . . 43356065 . https://web.archive.org/web/20190225114235/http://pdfs.semanticscholar.org/5ef8/dda794a72f0f9c3c347b0a2db9bd1a081571.pdf . dead . 2019-02-25 . 5 July 2019.
    49. Web site: SH Microprocessor Leading the Nomadic Era . Semiconductor History Museum of Japan . 27 June 2019.
    50. Web site: PA-RISC Processors . 2008-05-11 .
    51. Web site: HARP-1: A 120 MHz Superscalar PA-RISC Processor . . 19 June 2019 . 23 April 2016 . https://web.archive.org/web/20160423084425/http://www.hotchips.org/wp-content/uploads/hc_archives/hc05/3_Tue/HC05.S8/HC05.8.1-Matsubara-Hitachi-HARP-1.pdf . dead .
    52. Entertainment Systems and High-Performance Processor SH-4 . Hitachi Review . 1999 . 48 . 2 . 58–63 . . 44852046 . https://web.archive.org/web/20190221030542/http://pdfs.semanticscholar.org/2dae/557444cd159c68d9a557189c70a68de0d233.pdf . dead . 2019-02-21 . 27 June 2019.
    53. Web site: Remembering the Sega Dreamcast . . 18 June 2019 . September 29, 2009.
    54. News: EMOTION ENGINE® AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION® BECOME ONE CHIP . 26 June 2019 . . April 21, 2003.
    55. Book: Hennessy. John L. . John L. Hennessy . Patterson. David A. . David Patterson (scientist). Computer Architecture: A Quantitative Approach. 491. 9 April 2013. 3. 29 May 2002. Morgan Kaufmann. 978-0-08-050252-6.
    56. Web site: Anand Lal Shimpi . A Closer Look at the Sandy Bridge Die . 10 January 2011 . AnandTech .
    57. Book: renethx . Cedar (HD 5450) and Zacate (E350) are manufactured in TSMC 40 nm process . AMD Zacate — the next great HTPC chip? . 10 November 2011 . AVS Forum . http://www.avsforum.com/avs-vb/showthread.php?s=75ab046a2a3e7839557c22b89ff1ccd5&p=19470009#post19470009.
    58. Web site: AMD Revises Bulldozer Transistor Count: 1.2B, not 2B . 2 December 2011 . AnandTech .
    59. Web site: SiFive - HiFive1 . https://web.archive.org/web/20161130123115/https://www.sifive.com/products/hifive1/ . 2016-11-30 . dead.
    60. Web site: Sparc M8 processor . Oracle main website . Oracle Corp . 3 March 2019.
    61. Web site: Is M8 the Last Hurrah for Oracle Sparc?. 18 September 2017.
    62. Web site: SiFive - HiFive1 . https://web.archive.org/web/20171018135414/https://www.sifive.com/products/risc-v-core-ip/u54-mc/ . 2017-10-18 . dead.
    63. Web site: SiFive Introduces 7 Series RISC-V Cores . 2 November 2018 .