The Michell solution is a general solution to the elasticity equations in polar coordinates (
r,\theta
\theta
Michell[1] showed that the general solution can be expressed in terms of an Airy stress function of the formThe terms
A1r\cos\theta
E1r\sin\theta
The stress components can be obtained by substituting the Michell solution into the equations for stress in terms of the Airy stress function (in cylindrical coordinates). A table of stress components is shown below.[2]
\varphi | \sigmarr | \sigmar\theta | \sigma\theta\theta | |
---|---|---|---|---|
r2 | 2 | 0 | 2 | |
r2~lnr | 2~lnr+1 | 0 | 2~lnr+3 | |
lnr | r-2 | 0 | -r-2 | |
\theta | 0 | r-2 | 0 | |
r3~\cos\theta | 2~r~\cos\theta | 2~r~\sin\theta | 6~r~\cos\theta | |
r\theta~\cos\theta | -2~r-1~\sin\theta | 0 | 0 | |
r~lnr~\cos\theta | r-1~\cos\theta | r-1~\sin\theta | r-1~\cos\theta | |
r-1~\cos\theta | -2~r-3~\cos\theta | -2~r-3~\sin\theta | 2~r-3~\cos\theta | |
r3~\sin\theta | 2~r~\sin\theta | -2~r~\cos\theta | 6~r~\sin\theta | |
r\theta~\sin\theta | 2~r-1~\cos\theta | 0 | 0 | |
r~lnr~\sin\theta | r-1~\sin\theta | -r-1~\cos\theta | r-1~\sin\theta | |
r-1~\sin\theta | -2~r-3~\sin\theta | 2~r-3~\cos\theta | 2~r-3~\sin\theta | |
rn+2~\cos(n\theta) | -(n+1)(n-2)~rn~\cos(n\theta) | n(n+1)~rn~\sin(n\theta) | (n+1)(n+2)~rn~\cos(n\theta) | |
r-n+2~\cos(n\theta) | -(n+2)(n-1)~r-n~\cos(n\theta) | -n(n-1)~r-n~\sin(n\theta) | (n-1)(n-2)~r-n~\cos(n\theta) | |
rn~\cos(n\theta) | -n(n-1)~rn-2~\cos(n\theta) | n(n-1)~rn-2~\sin(n\theta) | n(n-1)~rn-2~\cos(n\theta) | |
r-n~\cos(n\theta) | -n(n+1)~r-n-2~\cos(n\theta) | -n(n+1)~r-n-2~\sin(n\theta) | n(n+1)~r-n-2~\cos(n\theta) | |
rn+2~\sin(n\theta) | -(n+1)(n-2)~rn~\sin(n\theta) | -n(n+1)~rn~\cos(n\theta) | (n+1)(n+2)~rn~\sin(n\theta) | |
r-n+2~\sin(n\theta) | -(n+2)(n-1)~r-n~\sin(n\theta) | n(n-1)~r-n~\cos(n\theta) | (n-1)(n-2)~r-n~\sin(n\theta) | |
rn~\sin(n\theta) | -n(n-1)~rn-2~\sin(n\theta) | -n(n-1)~rn-2~\cos(n\theta) | n(n-1)~rn-2~\sin(n\theta) | |
r-n~\sin(n\theta) | -n(n+1)~r-n-2~\sin(n\theta) | n(n+1)~r-n-2~\cos(n\theta) | n(n+1)~r-n-2~\sin(n\theta) |
(ur,u\theta)
\kappa=\begin{cases} 3-4~\nu&\rm{for~plane~strain}\\ \cfrac{3-\nu}{1+\nu}&\rm{for~plane~stress}\\ \end{cases}
\nu
\mu
\varphi | 2~\mu~ur | 2~\mu~u\theta | ||||||
---|---|---|---|---|---|---|---|---|
r2 | (\kappa-1)~r | 0 | ||||||
r2~lnr | (\kappa-1)~r~lnr-r | (\kappa+1)~r~\theta | ||||||
lnr | -r-1 | 0 | ||||||
\theta | 0 | -r-1 | ||||||
r3~\cos\theta | (\kappa-2)~r2~\cos\theta | (\kappa+2)~r2~\sin\theta | ||||||
r\theta~\cos\theta |
[(\kappa-1)\theta~\cos\theta+\{1-(\kappa+1)lnr\}~\sin\theta] |
[(\kappa-1)\theta~\sin\theta+\{1+(\kappa+1)lnr\}~\cos\theta] | ||||||
r~lnr~\cos\theta |
[(\kappa+1)\theta~\sin\theta-\{1-(\kappa-1)lnr\}~\cos\theta] |
[(\kappa+1)\theta~\cos\theta-\{1+(\kappa-1)lnr\}~\sin\theta] | ||||||
r-1~\cos\theta | r-2~\cos\theta | r-2~\sin\theta | ||||||
r3~\sin\theta | (\kappa-2)~r2~\sin\theta | -(\kappa+2)~r2~\cos\theta | ||||||
r\theta~\sin\theta |
[(\kappa-1)\theta~\sin\theta-\{1-(\kappa+1)lnr\}~\cos\theta] |
[(\kappa-1)\theta~\cos\theta-\{1+(\kappa+1)lnr\}~\sin\theta] | ||||||
r~lnr~\sin\theta |
[(\kappa+1)\theta~\cos\theta+\{1-(\kappa-1)lnr\}~\sin\theta] |
[(\kappa+1)\theta~\sin\theta+\{1+(\kappa-1)lnr\}~\cos\theta] | ||||||
r-1~\sin\theta | r-2~\sin\theta | -r-2~\cos\theta | ||||||
rn+2~\cos(n\theta) | (\kappa-n-1)~rn+1~\cos(n\theta) | (\kappa+n+1)~rn+1~\sin(n\theta) | ||||||
r-n+2~\cos(n\theta) | (\kappa+n-1)~r-n+1~\cos(n\theta) | -(\kappa-n+1)~r-n+1~\sin(n\theta) | ||||||
rn~\cos(n\theta) | -n~rn-1~\cos(n\theta) | n~rn-1~\sin(n\theta) | ||||||
r-n~\cos(n\theta) | n~r-n-1~\cos(n\theta) | n(~r-n-1~\sin(n\theta) | ||||||
rn+2~\sin(n\theta) | (\kappa-n-1)~rn+1~\sin(n\theta) | -(\kappa+n+1)~rn+1~\cos(n\theta) | ||||||
r-n+2~\sin(n\theta) | (\kappa+n-1)~r-n+1~\sin(n\theta) | (\kappa-n+1)~r-n+1~\cos(n\theta) | ||||||
rn~\sin(n\theta) | -n~rn-1~\sin(n\theta) | -n~rn-1~\cos(n\theta) | ||||||
r-n~\sin(n\theta) | n~r-n-1~\sin(n\theta) | -n~r-n-1~\cos(n\theta) |
Note that a rigid body displacement can be superposed on the Michell solution of the form
\begin{align} ur&=A~\cos\theta+B~\sin\theta\\ u\theta&=-A~\sin\theta+B~\cos\theta+C~r\\ \end{align}