Meyer wavelet explained

The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer.[1] As a type of a continuous wavelet, it has been applied in a number of cases, such as in adaptive filters,[2] fractal random fields,[3] and multi-fault classification.[4]

The Meyer wavelet is infinitely differentiable with infinite support and defined in frequency domain in terms of function

\nu

as

\Psi(\omega):=\begin{cases}

1
\sqrt{2\pi
} \sin\left(\frac \nu \left(\frac -1\right)\right) e^ & \text 2 \pi /3<|\omega|< 4 \pi /3, \\ \frac \cos\left(\frac \nu \left(\frac-1\right)\right) e^ & \text 4 \pi /3<| \omega|< 8 \pi /3, \\ 0 & \text,\end

where

\nu(x):=\begin{cases} 0&ifx<0,\\ x&if0<x<1,\\ 1&ifx>1. \end{cases}

There are many different ways for defining this auxiliary function, which yields variants of the Meyer wavelet.For instance, another standard implementation adopts

\nu(x):=\begin{cases} x4(35-84x+70x2-20x3)&if0<x<1,\\ 0&otherwise. \end{cases}

The Meyer scale function is given by

\Phi(\omega):=\begin{cases}

1
\sqrt{2\pi
} & \text | \omega| < 2 \pi/3, \\ \frac \cos\left(\frac \nu \left(\frac - 1\right) \right) & \text 2\pi/3 < |\omega| < 4\pi/3, \\ 0 & \text.\end

In the time domain, the waveform of the Meyer mother-wavelet has the shape as shown in the following figure:

Close expressions

Valenzuela and de Oliveira [5] give the explicit expressions of Meyer wavelet and scale functions:

\phi(t)=\begin{cases}

2
3

+

4
3\pi

&t=0,\\

\sin(2\pit)+
4
3
t\cos(4\pi
3
t)
3
\pit-
16\pi
9
t3

&otherwise, \end{cases}

and

\psi(t)=\psi1(t)+\psi2(t),

where

\psi1(t)=

4(t-
12)\cos[2\pi
3
(t
-
12)]
-
1
\pi
\sin[4\pi
3
(t-
12)]
3\pi
(t-
12)
-
16
9
(t-
12)
3

,

\psi2(t)=

8(t-
12)\cos[8\pi
3
(t
-
12)]
+
1
\pi
\sin[4\pi
3
(t-
12)]
3\pi
(t-
12)
-
64
9
(t-
12)
3

.

References

External links

Notes and References

  1. Book: Meyer . Yves . Ondelettes et opérateurs: Ondelettes . 1990 . Hermann . 9782705661250.
  2. Xu . L. . Zhang . D. . Wang . K. . Wavelet-based cascaded adaptive filter for removing baseline drift in pulse waveforms . IEEE Transactions on Biomedical Engineering . 2005 . 52 . 11 . 1973–1975 . 10.1109/tbme.2005.856296 . 16285403. 10397/193 . 6897442 . free .
  3. Elliott, Jr. . F. W. . Horntrop . D. J. . Majda . A. J. . A Fourier-Wavelet Monte Carlo method for fractal random fields . Journal of Computational Physics . 1997 . 132 . 2 . 384–408 . 10.1006/jcph.1996.5647 . 1997JCoPh.132..384E. free .
  4. Abbasion . S. . etal . Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine . Mechanical Systems and Signal Processing . 2007 . 21 . 7 . 2933–2945 . 10.1016/j.ymssp.2007.02.003 . 2007MSSP...21.2933A.
  5. Book: Valenzuela . Victor Vermehren . Anais de XXXIII Simpósio Brasileiro de Telecomunicações . de Oliveira . H. M. . Close expressions for Meyer Wavelet and Scale Function . 1502.00161 . 4 . 2015. 10.14209/SBRT.2015.2 . 88513986 .