Methylomirabilis oxyfera explained

Candidatus "Methylomirabilis oxyfera" is a candidate species of Gram-negative bacteria belonging to the NC10 phylum, characterized for its capacity to couple anaerobic methane oxidation with nitrite reduction in anoxic environments.[1] [2] To acquire oxygen for methane oxidation, M. oxyfera utilizes an intra-aerobic pathway through the reduction of nitrite (NO2) to dinitrogen (N2) and oxygen.[3]

Enrichment

Enriched Ca. "M. oxyfera" cells have been identified as primarily having a unique polygonal cell shape through the use of electron microscopy techniques. Unlike methanotrophic Pseudomonadota, Ca. "M. oxyfera" cells lack intracytoplasmic membranes when grown under laboratory conditions.[4] The optimum growth ranges for Ca. "M. oxyfera" is between pH 7-8 and 25-30 °C. Ca. "M. oxyfera"cell envelopes are Gram-negative and are generally 0.25–0.5 μm in diameter and 0.8–1.1 μm in length.

Methane oxidation

Ca. "M. oxyfera" has the capacity to disproportionate nitric oxide into oxygen and nitrogen gas. This intermediate oxygen is then used in the oxidation of methane into carbon dioxide.

Overall reactions

Nitrogen oxide dismutation:

Methane oxidation:

Environmental significance

Ca. "M. oxyfera" has been identified in several environments including rice paddy soil in China,[5] multiple river and lake sediments,[6] and wastewater sludge in The Netherlands.[7] Ca. "M. oxyfera" is predicted to inhabit environments with high concentrations of nitrogen and methane, near boundaries that separate oxic and anoxic zones. It is suggested that Ca. "M. oxyfera" and similar organisms contribute to the global carbon and nitrogen cycles. These organisms may also play a role in reducing the nutrient loads within freshwater ecosystems that have been contaminated with fertilizers. Nitrites are usually undesirable in the environment, can be detrimental to human health, and can lead to eutrophication of aquatic ecosystems and algal blooms.[8] [9] Meanwhile methane is a potent greenhouse gas that has a stronger greenhouse potential per molecule than carbon dioxide.[10] The presence of organisms like M. oxyfera can therefore be beneficial in many environments and might be used for bioremediation or sewage treatment in the future.

See also

Notes and References

  1. Ettwig . Katharina F. . Butler . Margaret K. . Le Paslier . Denis . Pelletier . Eric . Mangenot . Sophie . Kuypers . Marcel M. M. . Schreiber . Frank . Dutilh . Bas E. . Zedelius . Johannes . de Beer . Dirk . Gloerich . Jolein . Wessels . Hans J. C. T. . van Alen . Theo . Luesken . Francisca . Wu . Ming L. . van de Pas-Schoonen . Katinka T. . Op den Camp . Huub J. M. . Janssen-Megens . Eva M. . Francoijs . Kees-Jan . Stunnenberg . Henk . Weissenbach . Jean . Jetten . Mike S. M. . Strous . Marc . Nitrite-driven anaerobic methane oxidation by oxygenic bacteria . Nature . March 2010 . 464 . 7288 . 543–548 . 10.1038/nature08883 . 20336137 . 2010Natur.464..543E . 205220000 . 2066/84284 . free .
  2. Haroon . Mohamed F. . Hu . Shihu . Shi . Ying . Imelfort . Michael . Keller . Jurg . Hugenholtz . Philip . Yuan . Zhiguo . Tyson . Gene W. . Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage . Nature . 29 August 2013 . 500 . 7464 . 567–570 . 10.1038/nature12375 . 23892779 . 2013Natur.500..567H . 4368118 .
  3. Wu . Ming L. . Ettwig . Katharina F. . Jetten . Mike S.M. . Strous . Marc . Keltjens . Jan T. . Niftrik . Laura van . A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera' . Biochemical Society Transactions . February 2011 . 39 . 1 . 243–248 . 10.1042/BST0390243 . 21265781 . 2066/91512 . free .
  4. Wu . Ming L. . van Teeseling . Muriel C. F. . Willems . Marieke J. R. . van Donselaar . Elly G. . Klingl . Andreas . Rachel . Reinhard . Geerts . Willie J. C. . Jetten . Mike S. M. . Strous . Marc . van Niftrik . Laura . Ultrastructure of the Denitrifying Methanotroph 'Candidatus Methylomirabilis oxyfera,' a Novel Polygon-Shaped Bacterium . Journal of Bacteriology . 15 January 2012 . 194 . 2 . 284–291 . 10.1128/JB.05816-11 . 22020652 . 3256638 .
  5. He . Zhanfei . Cai . Chaoyang . Wang . Jiaqi . Xu . Xinhua . Zheng . Ping . Jetten . Mike S. M. . Hu . Baolan . A novel denitrifying methanotroph of the NC10 phylum and its microcolony . Scientific Reports . September 2016 . 6 . 1 . 32241 . 10.1038/srep32241 . 27582299 . 5007514 . 2016NatSR...632241H .
  6. Shen . Li-Dong . He . Zhan-Fei . Zhu . Qun . Chen . Dong-Qing . Lou . Li-Ping . Xu . Xiang-Yang . Zheng . Ping . Hu . Bao-Lan . Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process . Frontiers in Microbiology . 2012 . 3 . 269 . 10.3389/fmicb.2012.00269 . 22905032 . 3408237 . free .
  7. Luesken . Francisca A. . van Alen . Theo A. . van der Biezen . Erwin . Frijters . Carla . Toonen . Ger . Kampman . Christel . Hendrickx . Tim L. G. . Zeeman . Grietje . Temmink . Hardy . Strous . Marc . Op den Camp . Huub J. M. . Jetten . Mike S. M. . Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge . Applied Microbiology and Biotechnology . November 2011 . 92 . 4 . 845–854 . 10.1007/s00253-011-3361-9 . 21667086 . 3198195 .
  8. Web site: Nitrite pollution puts warming waters at risk . 2 May 2017 .
  9. Grout . Leah . Chambers . Tim . Hales . Simon . Prickett . Marnie . Baker . Michael G. . Wilson . Nick . The potential human health hazard of nitrates in drinking water: a media discourse analysis in a high-income country . Environmental Health . 20 January 2023 . 22 . 1 . 9 . 10.1186/s12940-023-00960-5 . free . 36658626 . 9851889 . 2023EnvHe..22....9G .
  10. Web site: Methane | Vital Signs .