Software development process explained

In software engineering, a software development process or software development life cycle is a process of planning and managing software development. It typically involves dividing software development work into smaller, parallel, or sequential steps or sub-processes to improve design and/or product management. The methodology may include the pre-definition of specific deliverables and artifacts that are created and completed by a project team to develop or maintain an application.

Most modern development processes can be vaguely described as agile. Other methodologies include waterfall, prototyping, iterative and incremental development, spiral development, rapid application development, and extreme programming.

A life-cycle "model" is sometimes considered a more general term for a category of methodologies and a software development "process" is a particular instance as adopted by a specific organization. For example, many specific software development processes fit the spiral life-cycle model. The field is often considered a subset of the systems development life cycle.

History

The software development methodology framework did not emerge until the 1960s. According to Elliott (2004), the systems development life cycle can be considered to be the oldest formalized methodology framework for building information systems. The main idea of the software development life cycle has been "to pursue the development of information systems in a very deliberate, structured and methodical way, requiring each stage of the life cycle––from the inception of the idea to delivery of the final system––to be carried out rigidly and sequentially"[1] within the context of the framework being applied. The main target of this methodology framework in the 1960s was "to develop large scale functional business systems in an age of large scale business conglomerates. Information systems activities revolved around heavy data processing and number crunching routines."[1]

Requirements gathering and analysis:The first phase of the custom software development process involves understanding the client's requirements and objectives. This stage typically involves engaging in thorough discussions and conducting interviews with stakeholders to identify the desired features, functionalities, and overall scope of the software. The development team works closely with the client to analyze existing systems and workflows, determine technical feasibility, and define project milestones.

Planning and design:Once the requirements are understood, the custom software development team proceeds to create a comprehensive project plan. This plan outlines the development roadmap, including timelines, resource allocation, and deliverables. The software architecture and design are also established during this phase. User interface (UI) and user experience (UX) design elements are considered to ensure the software's usability, intuitiveness, and visual appeal.

Development:With the planning and design in place, the development team begins the coding process. This phase involves writing, testing, and debugging the software code. Agile methodologies, such as scrum or kanban, are often employed to promote flexibility, collaboration, and iterative development. Regular communication between the development team and the client ensures transparency and enables quick feedback and adjustments.

Testing and quality assurance:To ensure the software's reliability, performance, and security, rigorous testing and quality assurance (QA) processes are carried out. Different testing techniques, including unit testing, integration testing, system testing, and user acceptance testing, are employed to identify and rectify any issues or bugs. QA activities aim to validate the software against the predefined requirements, ensuring that it functions as intended.

Deployment and implementation:Once the software passes the testing phase, it is ready for deployment and implementation. The development team assists the client in setting up the software environment, migrating data if necessary, and configuring the system. User training and documentation are also provided to ensure a smooth transition and enable users to maximize the software's potential.

Maintenance and support:After the software is deployed, ongoing maintenance and support become crucial to address any issues, enhance performance, and incorporate future enhancements. Regular updates, bug fixes, and security patches are released to keep the software up-to-date and secure. This phase also involves providing technical support to end users and addressing their queries or concerns.Methodologies, processes, and frameworks range from specific prescriptive steps that can be used directly by an organization in day-to-day work, to flexible frameworks that an organization uses to generate a custom set of steps tailored to the needs of a specific project or group. In some cases, a "sponsor" or "maintenance" organization distributes an official set of documents that describe the process. Specific examples include:

1970s
1980s
1990s
2000s
2010s

Since DSDM in 1994, all of the methodologies on the above list except RUP have been agile methodologies - yet many organizations, especially governments, still use pre-agile processes (often waterfall or similar). Software process and software quality are closely interrelated; some unexpected facets and effects have been observed in practice.[2]

Among these, another software development process has been established in open source. The adoption of these best practices known and established processes within the confines of a company is called inner source.

Prototyping

Software prototyping is about creating prototypes, i.e. incomplete versions of the software program being developed.

The basic principles are:

A basic understanding of the fundamental business problem is necessary to avoid solving the wrong problems, but this is true for all software methodologies.

Methodologies

Agile development

See main article: Agile software development.

"Agile software development" refers to a group of software development frameworks based on iterative development, where requirements and solutions evolve via collaboration between self-organizing cross-functional teams. The term was coined in the year 2001 when the Agile Manifesto was formulated.

Agile software development uses iterative development as a basis but advocates a lighter and more people-centric viewpoint than traditional approaches. Agile processes fundamentally incorporate iteration and the continuous feedback that it provides to successively refine and deliver a software system.

The Agile model also includes the following software development processes:

Continuous integration

See main article: Continuous integration.

Continuous integration is the practice of merging all developer working copies to a shared mainline several times a day.[3] Grady Booch first named and proposed CI in his 1991 method,[4] although he did not advocate integrating several times a day. Extreme programming (XP) adopted the concept of CI and did advocate integrating more than once per day – perhaps as many as tens of times per day.

Incremental development

See main article: Iterative and incremental development.

Various methods are acceptable for combining linear and iterative systems development methodologies, with the primary objective of each being to reduce inherent project risk by breaking a project into smaller segments and providing more ease-of-change during the development process.

There are three main variants of incremental development:

  1. A series of mini-waterfalls are performed, where all phases of the waterfall are completed for a small part of a system, before proceeding to the next increment, or
  2. Overall requirements are defined before proceeding to evolutionary, mini-waterfall development of individual increments of a system, or
  3. The initial software concept, requirements analysis, and design of architecture and system core are defined via waterfall, followed by incremental implementation, which culminates in installing the final version, a working system.

Rapid application development

See main article: Rapid application development.

Rapid application development (RAD) is a software development methodology, which favors iterative development and the rapid construction of prototypes instead of large amounts of up-front planning. The "planning" of software developed using RAD is interleaved with writing the software itself. The lack of extensive pre-planning generally allows software to be written much faster and makes it easier to change requirements.

The rapid development process starts with the development of preliminary data models and business process models using structured techniques. In the next stage, requirements are verified using prototyping, eventually to refine the data and process models. These stages are repeated iteratively; further development results in "a combined business requirements and technical design statement to be used for constructing new systems".

The term was first used to describe a software development process introduced by James Martin in 1991. According to Whitten (2003), it is a merger of various structured techniques, especially data-driven information technology engineering, with prototyping techniques to accelerate software systems development.[5]

The basic principles of rapid application development are:

Waterfall development

See main article: Waterfall model.

The waterfall model is a sequential development approach, in which development is seen as flowing steadily downwards (like a waterfall) through several phases, typically:

The first formal description of the method is often cited as an article published by Winston W. Royce[6] in 1970, although Royce did not use the term "waterfall" in this article. Royce presented this model as an example of a flawed, non-working model.[7]

The basic principles are:

The waterfall model is a traditional engineering approach applied to software engineering. A strict waterfall approach discourages revisiting and revising any prior phase once it is complete. This "inflexibility" in a pure waterfall model has been a source of criticism by supporters of other more "flexible" models. It has been widely blamed for several large-scale government projects running over budget, over time and sometimes failing to deliver on requirements due to the big design up front approach. Except when contractually required, the waterfall model has been largely superseded by more flexible and versatile methodologies developed specifically for software development. See Criticism of waterfall model.

Spiral development

See main article: Spiral model.

In 1988, Barry Boehm published a formal software system development "spiral model," which combines some key aspects of the waterfall model and rapid prototyping methodologies, in an effort to combine advantages of top-down and bottom-up concepts. It provided emphasis on a key area many felt had been neglected by other methodologies: deliberate iterative risk analysis, particularly suited to large-scale complex systems.

The basic principles are:

Shape Up

Shape Up is a software development approach introduced by Basecamp in 2018. It is a set of principles and techniques that Basecamp developed internally to overcome the problem of projects dragging on with no clear end. Its primary target audience is remote teams. Shape Up has no estimation and velocity tracking, backlogs, or sprints, unlike waterfall, agile, or scrum. Instead, those concepts are replaced with appetite, betting, and cycles. As of 2022, besides Basecamp, notable organizations that have adopted Shape Up include UserVoice and Block.[11] [12]

Advanced methodologies

Other high-level software project methodologies include:

Process meta-models

Some "process models" are abstract descriptions for evaluating, comparing, and improving the specific process adopted by an organization.

In practice

A variety of such frameworks have evolved over the years, each with its own recognized strengths and weaknesses. One software development methodology framework is not necessarily suitable for use by all projects. Each of the available methodology frameworks is best suited to specific kinds of projects, based on various technical, organizational, project, and team considerations.[14]

See also

External links

Notes and References

  1. Book: Geoffrey Elliott . 2004 . Global Business Information Technology: an integrated systems approach . Pearson Education . 87.
  2. 10.1109/MS.2015.87 . Software Process versus Design Quality: Tug of War? . IEEE Software . 32 . 4 . 7–11 . 2015 . Suryanarayana . Girish . free .
  3. Book: Continuous Integration: Improving Software Quality and Reducing Risk. Paul M. Duvall. Steve Matyas. Andrew Glover. 978-0-321-33638-5. Addison-Wesley Professional. 2007.
  4. Book: Booch, Grady . Grady Booch . 1991 . Object Oriented Design: With Applications . . 209 . 9780805300918 . August 18, 2014 .
  5. [Whitten, Jeffrey L.]
  6. Web site: Wasserfallmodell > Entstehungskontext . Markus Rerych . Institut für Gestaltungs- und Wirkungsforschung, TU-Wien . German . November 28, 2007.
  7. Web site: Conrad Weisert . Waterfall methodology: there's no such thing! . https://web.archive.org/web/20220802131155/http://www.idinews.com/waterfall.html . August 2, 2022 . dead.
  8. Barry Boehm . Barry Boehm . A Spiral Model of Software Development and Enhancement . ACM SIGSOFT Software Engineering Notes . . 11 . 4 . 14–24 . August 1986. 10.1145/12944.12948 . 1781829 .
  9. Book: Richard H. Thayer . Barry W. Boehm . Barry Boehm . 1986 . Tutorial: software engineering project management . Computer Society Press of the IEEE . 130.
  10. Book: Barry W. Boehm . Barry Boehm . 2000 . Software cost estimation with Cocomo II: Volume 1.
  11. Web site: Foreword by Jason Fried Shape Up . September 11, 2022 . basecamp.com.
  12. Web site: Is Shape Up just a nice theory? . September 12, 2022 . Curious Lab . en-AU.
  13. 10.1109/MS.2016.117 . Modeling Test Cases in BPMN for Behavior-Driven Development . IEEE Software . 33 . 5 . 15–21 . 2016 . Lübke, Daniel . van Lessen, Tammo . 14539297 .
  14. Web site: Centers for Medicare & Medicaid Services (CMS) Office of Information Service . Selecting a development approach . United States Department of Health and Human Services (HHS) . Original Issuance: February 17, 2005 . March 27, 2008 . October 27, 2008 . https://web.archive.org/web/20120620212919/http://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-Technology/XLC/Downloads/SelectingDevelopmentApproach.pdf . June 20, 2012 . dead.